YOLO-DA: An Efficient YOLO-Based Detector for Remote Sensing Object Detection

被引:13
|
作者
Lin, Jiehua [1 ]
Zhao, Yan [1 ]
Wang, Shigang [1 ]
Tang, Yu [1 ]
机构
[1] Jilin Univ, Coll Commun & Engn, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Detectors; Head; Feature extraction; Optical imaging; Optical detectors; Task analysis; Object detection; Attention; convolutional neural networks (CNNs); object detection (OD); remote sensing (RS) images;
D O I
10.1109/LGRS.2023.3303896
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In the past few decades, many efficient object detectors have been proposed for natural scene image object detection (OD). However, due to the complex scenes and high interclass similarity of optical remote sensing (RS) images, applying these detectors to optical RS images directly is not very effective. Most of the recent detectors pursue higher accuracy while ignoring the balance between detection accuracy and speed, which hinders the practical application of these detectors, especially in embedded devices. To meet these challenges, a fast and accurate detector based on you only look once (YOLO) with decoupled attention head (YOLO-DA) is proposed, which effectively improves detection performance while only introducing minimal complexity. Specifically, an attention module at the end of the detector is designed for guiding a neural network to extract more efficient features from the complex background while also minimizing the amount of additional computation. Moreover, a lightweight decoupled detection head with enhanced classification and localization capability is developed to detect objects with high interclass similarity. In the experiments, the proposed method effectively solves the problem of high interclass similarity and improves the mean average precision (mAP) by 6.8% on the fine-grained optical RS dataset SIMD, compared with YOLOv5-L. In addition, the proposed method improves the mAP by 1.0%, 1.7%, and 0.6% on the other three publicly open optical RS datasets, respectively. Experimental results on detection accuracy and inference time demonstrate that our method achieves the best trade-off between detection performance and speed.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] An optimized YOLO-based object detection model for crop harvesting system
    Junos, Mohamad Haniff
    Mohd Khairuddin, Anis Salwa
    Thannirmalai, Subbiah
    Dahari, Mahidzal
    IET IMAGE PROCESSING, 2021, 15 (09) : 2112 - 2125
  • [22] Transfer Learning for Object Detection in Remote Sensing Images with YOLO
    Devi, A.
    Reddy, K. Venkateswara
    Bangare, Sunil L.
    Pande, Deepti S.
    Balaji, S. R.
    Badhoutiya, Arti
    Shrivastava, Anurag
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 980 - 989
  • [23] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    B. V. Balaji Prabhu
    R. Lakshmi
    R. Ankitha
    M. S. Prateeksha
    N. C. Priya
    Modeling Earth Systems and Environment, 2022, 8 : 4509 - 4516
  • [24] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    Prabhu, B. V. Balaji
    Lakshmi, R.
    Ankitha, R.
    Prateeksha, M. S.
    Priya, N. C.
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 4509 - 4516
  • [25] R-YOLO: A YOLO-Based Method for Arbitrary-Oriented Target Detection in High-Resolution Remote Sensing Images
    Hou, Yongjie
    Shi, Gang
    Zhao, Yingxiang
    Wang, Fan
    Jiang, Xian
    Zhuang, Rujun
    Mei, Yunfei
    Ma, Xinjiang
    SENSORS, 2022, 22 (15)
  • [26] YOLO-based Threat Object Detection in X-ray Images
    Galvez, Reagan L.
    Dadios, Elmer P.
    Bandala, Argel A.
    Vicerra, Ryan Rhay P.
    2019 IEEE 11TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2019,
  • [27] MTGS-Yolo: a task-balanced algorithm for object detection in remote sensing images based on improved yolo
    Jin, Zhao
    Duan, Jiang
    Qiao, Liping
    He, Tian
    Shi, Xinyu
    Yan, Bohan
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (04):
  • [28] A YOLO-based Object Simplification Approach for Visual Prostheses
    Elnabawy, Reham H.
    Abdennadher, Slim
    Hellwich, Olaf
    Eldawlatly, Seif
    2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2022, : 183 - 186
  • [29] GDRS-YOLO: More Efficient Multiscale Features Fusion Object Detector for Remote Sensing Images
    Lin, Yulong
    Li, Jun
    Shen, Shulong
    Wang, Hong
    Zhou, Hongzhi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [30] SGM-YOLO: YOLO-Based Defect Detection Model for Wood Lumber
    Liu, Liping
    Zhang, Qiyu
    Peng, Wenqi
    Wang, Ruiqi
    Yin, Jingtao
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (15)