LARR: A Localization-Assisted Method to Conceal Latency-Induced Position Errors in MR Remote Rendering

被引:0
作者
Zeng, Hong-Lin [1 ]
Huang, Zheng-Ting [1 ]
Huang, Chih-Wei [1 ]
机构
[1] Natl Cent Univ, Dept Commun Engn, Taoyuan, Taiwan
来源
2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS | 2023年
关键词
Mixed Reality; low-latency communication; remote rendering; delay compensation;
D O I
10.1109/ICCWORKSHOPS57953.2023.10283669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The future of social interaction lies in the Metaverse, where mixed reality (MR) plays a key role. With the growth of the Metaverse, there is a growing demand for volumetric videos in the media industry. However, rendering complex volumetric content on mobile devices with limited computing power presents a challenge. To address this, we propose a localization-assisted remote rendering (LARR) architecture for MR applications, which can effectively conceal delay-induced position error and display streamed objects accurately. The LARR architecture uses dedicated object streaming cameras (OSC) at the server for each 3D object to enable real-time position updates. In addition, stream data optimization is used to minimize unnecessary data transfer. The LARR approach reduces streaming data by 81% and 46% compared to non-optimized and existing MR streaming architectures in real-world experiments.
引用
收藏
页码:1439 / 1444
页数:6
相关论文
共 18 条
  • [1] 4dviews, 4dviews volumetric motion capture systems
  • [2] Toward Truly Immersive Holographic-Type Communication: Challenges and Solutions
    Clemm, Alexander
    Vega, Maria Torres
    Ravuri, Hemanth Kumar
    Wauters, Tim
    De Turck, Filip
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (01) : 93 - 99
  • [3] Cuervo E., 2015, P 13 ANN INT C MOBIL, P121
  • [4] Ester M., 1996, P 2 INT C KNOWL DISC, P226, DOI DOI 10.5555/3001460.3001507
  • [5] Reproducibility Companion Paper: Kalman Filter-based Head Motion Prediction for Cloud-based Mixed Reality
    Guel, Serhan
    Bosse, Sebastian
    Podborski, Dimitri
    Schierl, Thomas
    Hellge, Cornelius
    Kastner, Marc A.
    Zahalka, Jan
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3619 - 3621
  • [6] Kalman Filter-based Head Motion Prediction for Cloud-based Mixed Reality
    Guel, Serhan
    Bosse, Sebastian
    Podborski, Dimitri
    Schierl, Thomas
    Hellge, Cornelius
    [J]. MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 3632 - 3641
  • [7] Low-latency Cloud-based Volumetric Video Streaming Using Head Motion Prediction
    Guel, Serhan
    Podborski, Dimitri
    Buchholz, Thomas
    Schierl, Thomas
    Hellge, Cornelius
    [J]. NOSSDAV '20: PROCEEDINGS OF THE 2020 WORKSHOP ON NETWORK AND OPERATING SYSTEM SUPPORT FOR DIGITAL AUDIO AND VIDEO, 2020, : 27 - 33
  • [8] Cloud Rendering-based Volumetric Video Streaming System for Mixed Reality Services
    Gul, Serhan
    Podborski, Dimitri
    Son, Jangwoo
    Bhullar, Gurdeep Singh
    Buchholz, Thomas
    Schierl, Thomas
    Hellge, Cornelius
    [J]. MMSYS'20: PROCEEDINGS OF THE 2020 MULTIMEDIA SYSTEMS CONFERENCE, 2020, : 357 - 360
  • [9] Motion Prediction and Pre-Rendering at the Edge to Enable Ultra-Low Latency Mobile 6DoF Experiences
    Hou, Xueshi
    Dey, Sujit
    [J]. IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2020, 1 : 1674 - 1690
  • [10] I. Telecom, 2003, ITU-T Recommendation H. 264.