Nested SU(2) symmetry of photonic orbital angular momentum

被引:2
|
作者
Saito, Shinichi [1 ]
机构
[1] Hitachi Ltd, Ctr Exploratory Res Lab, Res & Dev Grp, Tokyo, Japan
关键词
orbital angular momentum; special unitary group of degree 2; Lie algebra; optical vortex; ladder operator; Laguerre-Gaussian mode; coherent state; VECTOR VORTEX BEAMS; POINCARE-SPHERE; LIGHT-BEAMS; GENERATION; MODES;
D O I
10.3389/fphy.2023.1289062
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The polarization state is described by a quantum mechanical two-level system, which is known as special unitary group of degree 2 [SU(2)]. Polarization is attributed to an internal spin degree of freedom inherent to photons, while photons also possess an orbital degree of freedom. A fundamental understanding of the nature of spin and orbital angular momentum of photons is significant to utilize the degrees of freedom for various applications in optical communications, computations, sensing, and laser-patterning. Here, we show that the orbital angular momentum of coherent photons emitted from a laser diode can be incremented using a vortex lens, and the magnitude of orbital angular momentum increases with an increase in the topological charge inside the mode. The superposition state of the left and right vortices is described by the SU(2) state, similar to polarization; however, the radius of the corresponding Poincare sphere depends on the topological charge. Consequently, we expect a nested SU(2) structure to describe various states with different magnitudes in orbital angular momentum. We have experimentally developed a simple system to realize an arbitrary SU(2) state of orbital angular momentum by controlling both amplitudes and phases of the left and right vortices using a spin degree of freedom, whose interplays were confirmed by expected far-field images of dipoles and quadruples.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Quantum commutation relationship for photonic orbital angular momentum
    Saito, Shinichi
    FRONTIERS IN PHYSICS, 2023, 11
  • [2] Orbital angular momentum photonic quantum interface
    Zhou, Zhi-Yuan
    Li, Yan
    Ding, Dong-Sheng
    Zhang, Wei
    Shi, Shuai
    Shi, Bao-Sen
    Guo, Guang-Can
    LIGHT-SCIENCE & APPLICATIONS, 2016, 5 : e16019 - e16019
  • [3] Integrated photonic orbital angular momentum devices and systems: Potentials and challenges
    Cai XinLun
    Chen YuJie
    Yu SiYuan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56 (03) : 579 - 585
  • [4] Topological photonic orbital-angular-momentum switch
    Luo, Xi-Wang
    Zhang, Chuanwei
    Guo, Guang-Can
    Zhou, Zheng-Wei
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [5] Orbital angular momentum photonic quantum interface
    Zhi-Yuan Zhou
    Yan Li
    Dong-Sheng Ding
    Wei Zhang
    Shuai Shi
    Bao-Sen Shi
    Guang-Can Guo
    Light: Science & Applications, 2016, 5 : e16019 - e16019
  • [6] Photonic orbital angular momentum with controllable orientation
    Wan, Chenhao
    Chen, Jian
    Chong, Andy
    Zhan, Qiwen
    NATIONAL SCIENCE REVIEW, 2022, 9 (07)
  • [7] Orbital angular momentum symmetry in a driven optical parametric oscillator
    Rodrigues, R. B.
    Gonzales, J.
    Pinheiro da Silva, B.
    Huguenin, J. A. O.
    Martinelli, M.
    Medeiros de Araujo, R.
    Souza, C. E. R.
    Khoury, A. Z.
    OPTICS LETTERS, 2018, 43 (11) : 2486 - 2489
  • [8] Photonic quasicrystal fiber supporting orbital angular momentum modes
    Kim, Myunghwan
    Lee, Chung Ghiu
    Kim, Soeun
    NEXT-GENERATION OPTICAL COMMUNICATION: COMPONENTS, SUB-SYSTEMS, AND SYSTEMS VIII, 2019, 10947
  • [9] Integrated photonic orbital angular momentum devices and systems:Potentials and challenges
    CAI XinLun
    CHEN YuJie
    YU SiYuan
    Science China(Technological Sciences), 2013, (03) : 579 - 585
  • [10] Integrated photonic orbital angular momentum devices and systems: Potentials and challenges
    XinLun Cai
    YuJie Chen
    SiYuan Yu
    Science China Technological Sciences, 2013, 56 : 579 - 585