Linear Combination of Hamiltonian Simulation for Nonunitary Dynamics with Optimal State Preparation Cost

被引:15
作者
An, Dong [1 ]
Liu, Jin-Peng [2 ,3 ,4 ]
Lin, Lin [2 ,3 ,5 ,6 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Simons Inst Theory Comp, Berkeley, CA 94720 USA
[4] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[5] Lawrence Berkeley Natl Lab, Appl Math & Computat Res Div, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Challenge Inst Quantum Computat, Berkeley, CA 94720 USA
关键词
PERFECTLY MATCHED LAYER; QUANTUM; POTENTIALS;
D O I
10.1103/PhysRevLett.131.150603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a simple method for simulating a general class of nonunitary dynamics as a linear combination of Hamiltonian simulation (LCHS) problems. LCHS does not rely on converting the problem into a dilated linear system problem or on the spectral mapping theorem. The latter is the mathematical foundation of many quantum algorithms for solving a wide variety of tasks involving nonunitary processes, such as the quantum singular value transformation. The LCHS method can achieve optimal cost in terms of state preparation. We also demonstrate an application for open quantum dynamics simulation using the complex absorbing potential method with near-optimal dependence on all parameters.
引用
收藏
页数:6
相关论文
共 45 条
  • [1] Ahokas G. R, 2004, Improved Algorithms for Approximate Quantum Fourier Transforms and Sparse Hamiltonian Simulations
  • [2] An D., arXiv
  • [3] An D, 2022, QUANTUM-AUSTRIA, V6
  • [4] aps, About us, DOI [10.1103/PhysRevLett.131.150603, DOI 10.1103/PHYSREVLETT.131.150603]
  • [5] A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES
    BERENGER, JP
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) : 185 - 200
  • [6] Berry D. W., arXiv
  • [7] Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision
    Berry, Dominic W.
    Childs, Andrew M.
    Ostrander, Aaron
    Wang, Guoming
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (03) : 1057 - 1081
  • [8] Hamiltonian simulation with nearly optimal dependence on all parameters
    Berry, Dominic W.
    Childs, Andrew M.
    Kothari, Robin
    [J]. 2015 IEEE 56TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2015, : 792 - 809
  • [9] Simulating Hamiltonian Dynamics with a Truncated Taylor Series
    Berry, Dominic W.
    Childs, Andrew M.
    Cleve, Richard
    Kothari, Robin
    Somma, Rolando D.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (09)
  • [10] High-order quantum algorithm for solving linear differential equations
    Berry, Dominic W.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (10)