An Automated Prognostic Model for Pancreatic Ductal Adenocarcinoma

被引:6
作者
Vezakis, Ioannis [1 ]
Vezakis, Antonios [2 ]
Gourtsoyianni, Sofia [3 ]
Koutoulidis, Vassilis [3 ]
Polydorou, Andreas A. [2 ]
Matsopoulos, George K. [1 ]
Koutsouris, Dimitrios D. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Biomed Engn Lab, 9 Iroon Polytech St, Athens 15780, Greece
[2] Natl & Kapodistrian Univ Athens, Aretaie Hosp, Sch Med, Dept Surg 2, 76 Vas Sophias Ave, Athens 11528, Greece
[3] Natl & Kapodistrian Univ Athens, Aretaie Hosp, Sch Med, Dept Radiol 1, 76 Vas Sophias Ave, Athens 11528, Greece
关键词
pancreatic ductal adenocarcinoma; pancreatic cancer; prognostication; survival; predictive modeling; radiomics; machine learning; deep learning; RADIOMICS; BRIDGE;
D O I
10.3390/genes14091742
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Pancreatic ductal adenocarcinoma (PDAC) constitutes a leading cause of cancer-related mortality despite advances in detection and treatment methods. While computed tomography (CT) serves as the current gold standard for initial evaluation of PDAC, its prognostic value remains limited, as it relies on diagnostic stage parameters encompassing tumor size, lymph node involvement, and metastasis. Radiomics have recently shown promise in predicting postoperative survival of PDAC patients; however, they rely on manual pancreas and tumor delineation by clinicians. In this study, we collected a dataset of pre-operative CT scans from a cohort of 40 PDAC patients to evaluate a fully automated pipeline for survival prediction. Employing nnU-Net trained on an external dataset, we generated automated pancreas and tumor segmentations. Subsequently, we extracted 854 radiomic features from each segmentation, which we narrowed down to 29 via feature selection. We then combined these features with the Tumor, Node, Metastasis (TNM) system staging parameters, as well as the patient's age. We trained a random survival forest model to perform an overall survival prediction over time, as well as a random forest classifier for the binary classification of two-year survival, using repeated cross-validation for evaluation. Our results exhibited promise, with a mean C-index of 0.731 for survival modeling and a mean accuracy of 0.76 in two-year survival prediction, providing evidence of the feasibility and potential efficacy of a fully automated pipeline for PDAC prognostication. By eliminating the labor-intensive manual segmentation process, our streamlined pipeline demonstrates an efficient and accurate prognostication process, laying the foundation for future research endeavors.
引用
收藏
页数:13
相关论文
共 30 条
[1]   The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging [J].
Amin, Mahul B. ;
Greene, Frederick L. ;
Edge, Stephen B. ;
Compton, Carolyn C. ;
Gershenwald, Jeffrey E. ;
Brookland, Robert K. ;
Meyer, Laura ;
Gress, Donna M. ;
Byrd, David R. ;
Winchester, David P. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2017, 67 (02) :93-99
[2]   Fifty Years with the Cox Proportional Hazards Regression Model [J].
Andersen, Per Kragh .
JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2022, 102 (04) :1135-1144
[3]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   Pancreatic Cancer Survival Prediction: A Survey of the State-of-the-Art [J].
Bakasa, Wilson ;
Viriri, Serestina .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients [J].
Chakraborty, Jayasree ;
Langdon-Embry, Liana ;
Cunanan, Kristen M. ;
Escalon, Joanna G. ;
Allen, Peter J. ;
Lowery, Maeve A. ;
O'Reilly, Eileen M. ;
Gonen, Mithat ;
Do, Richard G. ;
Simpson, Amber L. .
PLOS ONE, 2017, 12 (12)
[7]   Equipping the American Joint Committee on Cancer staging for resectable pancreatic ductal adenocarcinoma with tumor grade: a recursive partitioning analysis [J].
Chen, Yu-Tong ;
Huang, Ze-Ping ;
Zhou, Zhi-Wei ;
He, Ming-Ming .
MEDICAL ONCOLOGY, 2016, 33 (11)
[8]  
Edge S.B., 2010, AJCC CANC STAGING HD
[9]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[10]   Pitfalls in the MDCT of pancreatic cancer: strategies for minimizing errors [J].
Haj-Mirzaian, Arya ;
Kawamoto, Satomi ;
Zaheer, Atif ;
Hruban, Ralph H. ;
Fishman, Elliot K. ;
Chu, Linda C. .
ABDOMINAL RADIOLOGY, 2020, 45 (02) :457-478