Spatio-temporal variations in global surface soil moisture based on multiple datasets: Intercomparison and climate drivers

被引:9
|
作者
Guan, Yansong [1 ,2 ]
Gu, Xihui [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ]
Slater, Louise J. [10 ,12 ]
Li, Jianfeng [11 ]
Kong, Dongdong [1 ,2 ]
Zhang, Xiang [12 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Key Lab Meteorol Disaster, Minist Educ, Nanjing 210044, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Nanjing 210044, Peoples R China
[5] China Meteorol Adm, Inst Arid Meteorol, Lanzhou 730020, Peoples R China
[6] Nanjing Hydraul Res Inst, Natl Key Lab Water Disaster Prevent, Nanjing 210029, Peoples R China
[7] SongShan Lab, Zhengzhou 450046, Peoples R China
[8] Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710061, Peoples R China
[9] Ctr Severe Weather & Climate & Hydrogeol Hazards, Wuhan 430074, Peoples R China
[10] Univ Oxford, Sch Geog & Environm, Oxford, England
[11] Hong Kong Baptist Univ, Dept Geog, Hong Kong, Peoples R China
[12] China Univ Geosci, Natl Engn Res Ctr Geog Informat Syst, Sch Geog & Informat Engn, Wuhan 430074, Peoples R China
关键词
Soil moisture; Climate change; Dynamical processes; Maximum Covariance Analysis; ENSO; PEARL RIVER-BASIN; DATA SETS; IN-SITU; 4; DECADES; CHINA; PRECIPITATION; VARIABILITY; IRRIGATION; TRENDS; IMPACT;
D O I
10.1016/j.jhydrol.2023.130095
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate soil moisture datasets are essential to understand the impacts of climate change. However, few studies have evaluated the consistency and drivers of long-term trends in soil moisture among different dataset types (satellite, assimilation, reanalysis, and climate model) at the global scale. Here we analyze the spatiotemporal variations of global surface soil moisture and associated climate dynamics over 1980-2020 using multiple soil moisture datasets, i.e., multi-satellite assimilated remote sensing datasets (ESA CCI), simulated soil moisture based on LSMs (GLDAS, GLEAM, CMIP6), and reanalysis (ECMWF ERA5, MERRA2, CRA-Land). Most of these datasets indicate pervasive drying of global surface soil moisture over the last four decades. Prominent soil moisture drying is detected in North America, Europe, northeastern Asia, North Africa, and the Arabian Peninsula. The cross-correlations among the five synthetic soil moisture datasets are the highest between GLEAM and the reanalysis datasets. Using the Aridity Index (AI, the ratio between annual total precipitation and potential evapotranspiration), we find that soil moisture drying is the most intensive in the humid-arid transitional regions with AI ranging 0.8-1.2. Surface soil moisture drying is primarily driven by increases in temperature, followed by ENSO, as indicated by Maximum Covariance Analysis (MCA). However, the significance of the impact of ENSO on soil moisture variability is sensitive to the choice of soil moisture dataset used in the MCA.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Temporal and Spatial Variations of Soil Moisture Over Xinjiang Based on Multiple GLDAS Datasets
    Hu, Zengyun
    Chen, Xi
    Li, Yaoming
    Zhou, Qiming
    Yin, Gang
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [2] Spatio-temporal changes in global root zone soil moisture from 1981 to 2017
    Luo, Xinrui
    Li, Shaoda
    Yang, Wunian
    Liu, Liang
    Shi, Yuehong
    Lai, Yunsen
    Yu, Peng
    Yang, Zhihan
    Luo, Ke
    Zhou, Tao
    Yang, Xin
    Wang, Xiao
    Chen, Shaohui
    Tang, Xiaolu
    JOURNAL OF HYDROLOGY, 2023, 626
  • [3] NONLINEAR COMPLEX PCA FOR SPATIO-TEMPORAL ANALYSIS OF GLOBAL SOIL MOISTURE
    Bueso, Diego
    Piles, Maria
    Camps-Valls, Gustau
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5780 - 5783
  • [4] Surface Soil Moisture Inversion and Distribution Based on Spatio-Temporal Fusion of MODIS and Landsat
    Wang, Sinan
    Wang, Wenjun
    Wu, Yingjie
    Zhao, Shuixia
    SUSTAINABILITY, 2022, 14 (16)
  • [5] Factors Determining Spatio-Temporal Variations of Soil Moisture Using Microwave Data
    Sure, Anudeep
    Varade, Divyesh
    Dikshit, Onkar
    2017 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN COMPUTING AND COMMUNICATION TECHNOLOGIES (ICETCCT), 2017, : 50 - 54
  • [6] Spatio-temporal dynamics of soil moisture driven by 'Grain for Green' program on the Loess Plateau, China
    Ye, Luping
    Fang, Linchuan
    Shi, Zhihua
    Deng, Lei
    Tan, Wenfeng
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2019, 269 : 204 - 214
  • [7] Bridging spatio-temporal discontinuities in global soil moisture mapping by coupling physics in deep learning
    Wei, Zushuai
    Miao, Linguang
    Peng, Jian
    Zhao, Tianjie
    Meng, Lingkui
    Lu, Hui
    Peng, Zhiqing
    Cosh, Michael H.
    Fang, Bin
    Lakshmi, Venkat
    Shi, Jiancheng
    REMOTE SENSING OF ENVIRONMENT, 2024, 313
  • [8] Spatio-temporal analysis of soil moisture in the experimental agricultural fields
    Fomin, D. S.
    Chashchin, A. N.
    THEORETICAL AND APPLIED ECOLOGY, 2023, (02): : 113 - 119
  • [9] Spatio-Temporal Variation of Critical Relative Humidity Based on Multiple Datasets
    Zhang, Weiyuan
    Li, Jiming
    Xu, Sihang
    Zhao, Yang
    Jian, Bida
    REMOTE SENSING, 2023, 15 (17)
  • [10] Modelling spatio-temporal soil moisture dynamics in mountain tundra
    Tyystjarvi, Vilna
    Kemppinen, Julia
    Luoto, Miska
    Aalto, Tuula
    Markkanen, Tiina
    Launiainen, Samuli
    Kieloaho, Antti-Jussi
    Aalto, Juha
    HYDROLOGICAL PROCESSES, 2022, 36 (01)