A 220 GHz superconducting titanium transition edge sensor array developed for cosmic microwave background experiments

被引:4
作者
Luo, Qianghui [1 ,2 ]
Zhong, Jiaqiang [1 ]
Miao, Wei [1 ]
Li, Feiming [1 ,2 ]
Wang, Qingcheng [1 ,2 ]
Ding, Jiangqiao [1 ,3 ]
Wu, Feng [1 ]
Wang, Zheng [1 ]
Zhou, Kangmin [1 ]
Ren, Yuan [1 ]
Zhang, Wen [1 ]
Li, Jing [1 ]
Shi, Shengcai [1 ]
机构
[1] Chinese Acad Sci, Purple Mt Observ, Nanjing 210033, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Nanjing Univ Informat Sci Technol, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
cosmic microwave background; superconducting transition edge sensor array; thermal conductance; complex impedance; noise equivalent power; PRIMORDIAL GRAVITATIONAL-WAVES; GRAVITY-WAVES; SILICON; POLARIZATION; BOLOMETER; GAS;
D O I
10.1088/1361-6668/acf73b
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we report on the design, fabrication, and characterization of a 220 GHz superconducting transition edge sensor (TES) array developed for ground-based cosmic microwave background (CMB) experiments. Unlike conventional TES arrays adopting thermometers made of bilayer superconducting films, the TES array has thermometers made of simpler single-layer titanium (Ti) film deposited on a suspended silicon nitride (SiN x ) membrane. The thermal weak link is realized by releasing the TES's thermal island including the Ti thermometer by dry etching with xenon difluoride (XeF2), giving a typical thermal conductance of 25 pW K-1. Its thermal-conductance mechanism is further studied by fitting the measured TES's complex impedance with a three-block thermal model. The dark and optical noise equivalent power (NEP) of a superconducting TES are both measured. Despite existing lens reflection and dielectric loss in the superconducting microstrip line, its typical optical NEP reaches 100 aW Hz-0.5, which meets the sensitivity requirement for ground-based CMB experiments.
引用
收藏
页数:9
相关论文
共 40 条
[1]   ANTENNA-COUPLED TES BOLOMETERS USED IN BICEP2, Keck Array, AND SPIDER [J].
Ade, P. A. R. ;
Aikin, R. W. ;
Amiri, M. ;
Barkats, D. ;
Benton, S. J. ;
Bischoff, C. A. ;
Bock, J. J. ;
Bonetti, J. A. ;
Brevik, J. A. ;
Buder, I. ;
Bullock, E. ;
Chattopadhyay, G. ;
Davis, G. ;
Day, P. K. ;
Dowell, C. D. ;
Duband, L. ;
Filippini, J. P. ;
Fliescher, S. ;
Golwala, S. R. ;
Halpern, M. ;
Hasselfield, M. ;
Hildebrandt, S. R. ;
Hilton, G. C. ;
Hristov, V. ;
Hui, H. ;
Irwin, K. D. ;
Jones, W. C. ;
Karkare, K. S. ;
Kaufman, J. P. ;
Keating, B. G. ;
Kefeli, S. ;
Kernasovskiy, S. A. ;
Kovac, J. M. ;
Kuo, C. L. ;
Leduc, H. G. ;
Leitch, E. M. ;
Llombart, N. ;
Lueker, M. ;
Mason, P. ;
Megerian, K. ;
Moncelsi, L. ;
Netterfield, C. B. ;
Nguyen, H. T. ;
O'Brient, R. ;
Ogburn, R. W. ;
Orlando, A. ;
Pryke, C. ;
Rahlin, A. S. ;
Reintsema, C. D. ;
Richter, S. .
ASTROPHYSICAL JOURNAL, 2015, 812 (02)
[2]   SPT-3G: A Multichroic Receiver for the South Pole Telescope [J].
Anderson, A. J. ;
Ade, P. A. R. ;
Ahmed, Z. ;
Austermann, J. E. ;
Avva, J. S. ;
Barry, P. S. ;
Thakur, R. Basu ;
Bender, A. N. ;
Benson, B. A. ;
Bleem, L. E. ;
Byrum, K. ;
Carlstrom, J. E. ;
Carter, F. W. ;
Cecil, T. ;
Chang, C. L. ;
Cho, H. M. ;
Cliche, J. F. ;
Crawford, T. M. ;
Cukierman, A. ;
Denison, E. V. ;
de Haan, T. ;
Ding, J. ;
Dobbs, M. A. ;
Dutcher, D. ;
Everett, W. ;
Foster, A. ;
Gannon, R. N. ;
Gilbert, A. ;
Groh, J. C. ;
Halverson, N. W. ;
Harke-Hosemann, A. H. ;
Harrington, N. L. ;
Henning, J. W. ;
Hilton, G. C. ;
Holder, G. P. ;
Holzapfel, W. L. ;
Huang, N. ;
Irwin, K. D. ;
Jeong, O. B. ;
Jonas, M. ;
Khaire, T. ;
Knox, L. ;
Kofman, A. M. ;
Korman, M. ;
Kubik, D. ;
Kuhlmann, S. ;
Kuklev, N. ;
Kuo, C. L. ;
Lee, A. T. ;
Leitch, E. M. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (5-6) :1057-1065
[3]   The bolometric focal plane array of the POLARBEAR CMB experiment [J].
Arnold, K. ;
Ade, P. A. R. ;
Anthony, A. E. ;
Barron, D. ;
Boettger, D. ;
Borrill, J. ;
Chapman, S. ;
Chinone, Y. ;
Dobbs, M. A. ;
Errard, J. ;
Fabbian, G. ;
Flanigan, D. ;
Fuller, G. ;
Ghribi, A. ;
Grainger, W. ;
Halverson, N. ;
Hasegawa, M. ;
Hattori, K. ;
Hazumi, M. ;
Holzapfel, W. L. ;
Howard, J. ;
Hyland, P. ;
Jaffe, A. ;
Keating, B. ;
Kermish, Z. ;
Kisner, T. ;
Le Jeune, M. ;
Lee, A. T. ;
Linder, E. ;
Lungu, M. ;
Matsuda, F. ;
Matsumura, T. ;
Miller, N. J. ;
Meng, X. ;
Morii, H. ;
Moyerman, S. ;
Myers, M. J. ;
Nishino, H. ;
Paar, H. ;
Quealy, E. ;
Reichardt, C. ;
Richards, P. L. ;
Ross, C. ;
Shimizu, A. ;
Shimmin, C. ;
Shimon, M. ;
Sholl, M. ;
Siritanasak, P. ;
Spieler, H. ;
Stebor, N. .
MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VI, 2012, 8452
[4]   SEPARATION OF FOREGROUND RADIATION FROM COSMIC MICROWAVE BACKGROUND ANISOTROPY USING MULTIFREQUENCY MEASUREMENTS [J].
BRANDT, WN ;
LAWRENCE, CR ;
READHEAD, ACS ;
PAKIANATHAN, JN ;
FIOLA, TM .
ASTROPHYSICAL JOURNAL, 1994, 424 (01) :1-21
[5]  
Chang FI, 1995, P SOC PHOTO-OPT INS, V2641, P117, DOI 10.1117/12.220933
[6]   Superconducting multiplexer for arrays of transition edge sensors [J].
Chervenak, JA ;
Irwin, KD ;
Grossman, EN ;
Martinis, JM ;
Reintsema, CD ;
Huber, ME .
APPLIED PHYSICS LETTERS, 1999, 74 (26) :4043-4045
[7]   DOUBLE-SLOT ANTENNAS ON EXTENDED HEMISPHERICAL AND ELLIPTIC SILICON DIELECTRIC LENSES [J].
FILIPOVIC, DF ;
GEARHART, SS ;
REBEIZ, GM .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1993, 41 (10) :1738-1749
[8]   An anti-reflection coating for silicon optics at terahertz frequencies [J].
Gatesman, AJ ;
Waldman, J ;
Ji, M ;
Musante, C ;
Yngvesson, S .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 2000, 10 (07) :264-266
[9]   A six-degree-of-freedom micro-vibration acoustic isolator for low-temperature radiation detectors based on superconducting transition-edge sensors [J].
Gottardi, L. ;
van Weers, H. ;
Dercksen, J. ;
Akamatsu, H. ;
Bruijn, M. P. ;
Gao, J. R. ;
Jackson, B. ;
Khosropanah, P. ;
van der Kuur, J. ;
Ravensberg, K. ;
Ridder, M. L. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (05)
[10]   BICEP3 performance overview and planned Keck Array upgrade [J].
Grayson, J. A. ;
Ade, P. A. R. ;
Ahmed, Z. ;
Alexander, K. D. ;
Amiri, M. ;
Barkats, D. ;
Benton, S. J. ;
Bischoff, C. A. ;
Bock, J. J. ;
Boenish, H. ;
Bowens-Rubin, R. ;
Buder, I. ;
Bullock, E. ;
Buza, V. ;
Connors, J. ;
Filippini, J. P. ;
Fliescher, S. ;
Halpern, M. ;
Harrison, S. ;
Hilton, G. C. ;
Hristov, V. V. ;
Hui, H. ;
Irwin, K. D. ;
Kang, J. ;
Karkare, K. S. ;
Karpel, E. ;
Kefeli, S. ;
Kernasovskiy, S. A. ;
Kovac, J. M. ;
Kuo, C. L. ;
Leitch, E. M. ;
Lueker, M. ;
Megerian, K. G. ;
Monticue, V. ;
Namikawa, T. ;
Netterfield, C. B. ;
Nguyen, H. T. ;
O'Brient, R. ;
Ogburn, R. W. ;
Pryke, C. ;
Reintsema, C. D. ;
Richter, S. ;
Schwarz, R. ;
Sorensen, C. ;
Sheehy, C. D. ;
Staniszewski, Z. K. ;
Steinbach, B. ;
Teply, G. P. ;
Thompson, K. L. ;
Tolan, J. E. .
MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VIII, 2016, 9914