Strength and Mechanism of Granite Residual Soil Strengthened by Microbial-Induced Calcite Precipitation Technology

被引:3
|
作者
Wang, Rong [1 ]
Li, Huawei [1 ]
Chen, Zichuang [2 ]
Liu, Fang [3 ]
Wei, Muwang [1 ]
Liu, Feiyu [1 ]
Wang, Qian [1 ]
Hu, Changbin [2 ]
机构
[1] Wuyi Univ, Sch Civil Engn & Architecture, Wuyishan 354300, Peoples R China
[2] Fuzhou Univ, Coll Civil Engn, Fuzhou 350116, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Life Sci, Fuzhou 350002, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 15期
关键词
MICP; granite residual soil; strengthen; urease activity; cementing solution concentration; CARBONATE PRECIPITATION; SLOPE;
D O I
10.3390/app13158863
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High rainfall environmental conditions can easily cause erosion or collapse of the granite residual soil slope. However, traditional slope reinforcement methods have drawbacks such as poor landscape effect, high energy consumption of raw materials, and environmental pollution. This study studied the application of microbial-induced calcite precipitation (MICP) in the reinforcement of granite residual soil. The consolidation effect of various methods was investigated, and the influence of cementing liquid concentration and pH value on consolidation under optimal curing conditions was explored. The results showed that the bacteria concentration reached OD600 = 3.0 and urease activity was 31.64 mM/min, which positively impact the production of calcium carbonate and the stability of crystal morphology. In addition, the soaking method was found to have the most effective consolidation effect on the surface soil samples, with the lowest disintegration rate. On the other hand, the peristaltic pump grouting method is the most effective in strengthening depth. This method resulted in a 513.65% increase in unconfined compressive strength (UCS), a 297.98% increase in cohesion, and a 101.75% increase in internal friction angle. This study also found that after seven rounds of grouting, the highest UCS was achieved in consolidated soil samples with a 0.5 mol/L cementing solution concentration, reaching 1.602 MPa. The UCS of soil samples increases as the pH value of the cementing fluid increases within the range of 6-8. As the pH value reaches 8-9, the strength increases and stabilizes gradually. These research findings can serve as an experimental basis for strengthening granite residual soil slopes and a guide for improving microbial geotechnical strengthening methods.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Application of Microbial-Induced Carbonate Precipitation for Disintegration Control of Granite Residual Soil
    Luo, Xiaoyan
    Feng, Yingqi
    Li, Chunjun
    Liu, Weiping
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [2] Effect of microbial-induced calcite precipitation (MICP) on the strength of soil contaminated with lead nitrate
    Hadi, Zahraa Samer
    Saeed, Khitam Abdulhussein
    JOURNAL OF THE MECHANICAL BEHAVIOR OF MATERIALS, 2022, 31 (01) : 143 - 149
  • [3] Strength improvement in silty clay by microbial-induced calcite precipitation
    Teng, Fuchen
    Sie, Yong-Cheng
    Ouedraogo, Colette
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2021, 80 (08) : 6359 - 6371
  • [4] Strength improvement in silty clay by microbial-induced calcite precipitation
    Fuchen Teng
    Yong-Cheng Sie
    Colette Ouedraogo
    Bulletin of Engineering Geology and the Environment, 2021, 80 : 6359 - 6371
  • [5] Factors Affecting Improvement in Engineering Properties of Residual Soil through Microbial-Induced Calcite Precipitation
    Soon, Ng Wei
    Lee, Lee Min
    Khun, Tan Chew
    Ling, Hii Siew
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2014, 140 (05)
  • [6] Effect of microbial-induced calcite precipitation towards strength and permeability of peat
    Phang, Ignatius Ren Kai
    Wong, Kwong Soon
    Chan, Yen San
    Lau, Sie Yon
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2022, 81 (08)
  • [7] Mechanism of Sand Cementation with an Efficient Method of Microbial-Induced Calcite Precipitation
    Wang, Lu
    Liu, Shuhua
    MATERIALS, 2021, 14 (19)
  • [8] Effect of microbial-induced calcite precipitation towards strength and permeability of peat
    Ignatius Ren Kai Phang
    Kwong Soon Wong
    Yen San Chan
    Sie Yon Lau
    Bulletin of Engineering Geology and the Environment, 2022, 81
  • [9] Effect of Microbial-Induced Calcite Precipitation Towards Tropical Organic Soil
    Phang, I. R. K.
    Wong, K. S.
    Chan, Y. S.
    Lau, S. Y.
    ADVANCES IN CIVIL ENGINEERING AND SCIENCE TECHNOLOGY, 2018, 2020
  • [10] Biological aspects of microbial-induced calcite precipitation
    Tsesarsky, Michael
    Gat, Daniela
    Ronen, Zeev
    ENVIRONMENTAL GEOTECHNICS, 2018, 5 (02): : 69 - 78