SELF-CLOSENESS NUMBERS OF PRODUCT SPACES

被引:1
|
作者
Li, Pengcheng [1 ]
机构
[1] Great Bay Univ, Sch Sci, Dept Math, Dongguan 523000, Peoples R China
基金
中国国家自然科学基金;
关键词
self-homotopy equivalence; self-closeness number; product space; reducibility; HOMOTOPY EQUIVALENCES;
D O I
10.4310/HHA.2023.v25.n1.a13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The self-closeness number of a CW-complex is a homotopy invariant defined by the minimal number n such that every selfmap of X which induces automorphisms on the first n homotopy groups of X is a homotopy equivalence. In this article we study the self-closeness numbers of finite Cartesian products, and prove that under certain conditions (called reducibility), the self-closeness number of product spaces is equal to the maximum of the self-closeness numbers of the factors. A series of criteria for the reducibility are investigated, and the results are used to determine self-closeness numbers of product spaces of some special spaces, such as Moore spaces, Eilenberg-MacLane spaces or atomic spaces.
引用
收藏
页码:249 / 264
页数:16
相关论文
共 50 条
  • [31] Sequential order of product of Frechet spaces
    Nogura, T
    Shibakov, A
    TOPOLOGY AND ITS APPLICATIONS, 1996, 70 (2-3) : 245 - 253
  • [32] Anisotropic singular integrals in product spaces
    Li BaoDe
    Bownik, Marcin
    Yang DaChun
    Zhou Yuan
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3163 - 3178
  • [33] SEQUENTIAL ORDER OF PRODUCT-SPACES
    NOGURA, T
    SHIBAKOV, A
    TOPOLOGY AND ITS APPLICATIONS, 1995, 65 (03) : 271 - 285
  • [34] Primes and order structure in the product spaces
    Bichara A.
    Misfeld J.
    Zanella C.
    Journal of Geometry, 1997, 58 (1-2) : 53 - 60
  • [35] Anisotropic singular integrals in product spaces
    BaoDe Li
    Marcin Bownik
    DaChun Yang
    Yuan Zhou
    Science China Mathematics, 2010, 53 : 3163 - 3178
  • [36] Product (α1, α2)-modulation spaces
    Galatia Cleanthous
    Athanasios G. Georgiadis
    Science China Mathematics, 2022, 65 : 1599 - 1640
  • [37] ON REDUCIBILITY OF THE SELF-HOMOTOPY EQUIVALENCES OF WEDGE SPACES
    俞海波
    沈文淮
    ActaMathematicaScientia, 2012, 32 (02) : 813 - 817
  • [38] ON REDUCIBILITY OF THE SELF-HOMOTOPY EQUIVALENCES OF WEDGE SPACES
    Yu Haibo
    Shen Wenhuai
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 813 - 817
  • [39] A note on certain square functions on product spaces
    Meng Wang
    Jiecheng Chen
    Dashan Fan
    Science in China Series A, 2006, 49 : 98 - 108
  • [40] Maximal functions along surfaces in product spaces
    Le, HV
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (02) : 422 - 432