Intermediate filaments associate with aggresome-like structures in proteostressed C. elegans neurons and influence large vesicle extrusions as exophers

被引:9
作者
Arnold, Meghan Lee [1 ]
Cooper, Jason [1 ]
Androwski, Rebecca [1 ]
Ardeshna, Sohil [1 ]
Melentijevic, Ilija [1 ]
Smart, Joelle [1 ]
Guasp, Ryan J. [1 ]
Nguyen, Ken C. Q. [2 ]
Bai, Ge [1 ]
Hall, David H. [2 ]
Grant, Barth D. [1 ]
Driscoll, Monica [1 ]
机构
[1] Rutgers State Univ, Dept Mol Biol & Biochem, Piscataway, NJ 08855 USA
[2] Albert Einstein Coll Med, Rose F Kennedy Ctr, Dept Neurosci, Bronx, NY 10461 USA
基金
美国国家卫生研究院;
关键词
PARKINSONS-DISEASE; QUALITY-CONTROL; LEWY BODIES; PROTEIN; HOMEOSTASIS; ACCUMULATION; MICROTUBULES; MITOCHONDRIA; DETERMINANT; MACROPHAGES;
D O I
10.1038/s41467-023-39700-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Toxic protein aggregates can spread among neurons to promote human neurodegenerative disease pathology. We found that in C. elegans touch neurons intermediate filament proteins IFD-1 and IFD-2 associate with aggresome-like organelles and are required cell-autonomously for efficient production of neuronal exophers, giant vesicles that can carry aggregates away from the neuron of origin. The C. elegans aggresome-like organelles we identified are juxtanuclear, HttPolyQ aggregate-enriched, and dependent upon orthologs of mammalian aggresome adaptor proteins, dynein motors, and microtubule integrity for localized aggregate collection. These key hallmarks indicate that conserved mechanisms drive aggresome formation. Furthermore, we found that human neurofilament light chain (NFL) can substitute for C. elegans IFD-2 in promoting exopher extrusion. Taken together, our results suggest a conserved influence of intermediate filament association with aggresomes and neuronal extrusions that eject potentially toxic material. Our findings expand understanding of neuronal proteostasis and suggest implications for neurodegenerative disease progression. High neuronal proteostress can trigger the production of aggregate-filled exophers in C. elegans. Here authors show that such extrusion relies on aggregate-associated intermediate filaments and adaptors.
引用
收藏
页数:17
相关论文
共 68 条
[1]   Engineering rules that minimize germline silencing of transgenes in simple extrachromosomal arrays in C. elegans [J].
Aljohani, Mohammed D. ;
El Mouridi, Sonia ;
Priyadarshini, Monika ;
Vargas-Velazquez, Amhed M. ;
Frokjaer-Jensen, Christian .
NATURE COMMUNICATIONS, 2020, 11 (01)
[2]   Quantitative Approaches for Scoring in vivo Neuronal Aggregate and Organelle Extrusion in Large Exopher Vesicles in C. elegans [J].
Arnold, Meghan Lee ;
Cooper, Jason ;
Grant, Barth D. ;
Driscoll, Monica .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (163) :1-28
[3]   Q&A: Trash talk: disposal and remote degradation of neuronal garbage [J].
Arnold, Meghan Lee ;
Melentijevic, Ilija ;
Smart, Anna Joelle ;
Driscoll, Monica .
BMC BIOLOGY, 2018, 16
[4]   A multicentre validation study of the diagnostic value of plasma neurofilament light [J].
Ashton, Nicholas J. ;
Janelidze, Shorena ;
Al Khleifat, Ahmad ;
Leuzy, Antoine ;
van der Ende, Emma L. ;
Karikari, Thomas K. ;
Benedet, Andrea L. ;
Pascoal, Tharick A. ;
Lleo, Alberto ;
Parnetti, Lucilla ;
Galimberti, Daniela ;
Bonanni, Laura ;
Pilotto, Andrea ;
Padovani, Alessandro ;
Lycke, Jan ;
Novakova, Lenka ;
Axelsson, Markus ;
Velayudhan, Latha ;
Rabinovici, Gil D. ;
Miller, Bruce ;
Pariante, Carmine ;
Nikkheslat, Naghmeh ;
Resnick, Susan M. ;
Thambisetty, Madhav ;
Scholl, Michael ;
Fernandez-Eulate, Gorka ;
Gil-Bea, Francisco J. ;
Lopez de Munain, Adolfo ;
Al-Chalabi, Ammar ;
Rosa-Neto, Pedro ;
Strydom, Andre ;
Svenningsson, Per ;
Stomrud, Erik ;
Santillo, Alexander ;
Aarsland, Dag ;
van Swieten, John C. ;
Palmqvist, Sebastian ;
Zetterberg, Henrik ;
Blennow, Kaj ;
Hye, Abdul ;
Hansson, Oskar .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model [J].
Brignull, Heather R. ;
Moore, Finola E. ;
Tang, Stephanie J. ;
Morimoto, Richard I. .
JOURNAL OF NEUROSCIENCE, 2006, 26 (29) :7597-7606
[6]  
Calixto A, 2010, NAT METHODS, V7, P554, DOI [10.1038/NMETH.1463, 10.1038/nmeth.1463]
[7]   Intermediate Filaments in Caenorhabditis elegans [J].
Carberry, Katrin ;
Wiesenfahrt, Tobias ;
Windoffer, Reinhard ;
Bossinger, Olaf ;
Leube, Rudolf E. .
CELL MOTILITY AND THE CYTOSKELETON, 2009, 66 (10) :852-864
[8]   STRUCTURAL AND FUNCTIONAL DIVERSITY IN THE NEURONAL MICROTUBULES OF CAENORHABDITIS-ELEGANS [J].
CHALFIE, M ;
THOMSON, JN .
JOURNAL OF CELL BIOLOGY, 1982, 93 (01) :15-23
[9]   Cellular Strategies of Protein Quality Control [J].
Chen, Bryan ;
Retzlaff, Marco ;
Roos, Thomas ;
Frydman, Judith .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2011, 3 (08) :1-14
[10]   Physiological and molecular mechanisms of salt and water homeostasis in the nematode Caenorhabditis elegans [J].
Choe, Keith P. .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2013, 305 (03) :R175-R186