A particle method for 1-D compressible fluid flow

被引:2
作者
Karafyllis, Iasson [1 ,4 ]
Papageorgiou, Markos [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens, Greece
[2] Tech Univ Crete, Dynam Syst & Simulat Lab, Khania, Greece
[3] Ningbo Univ, Fac Maritime & Transportat, Ningbo, Peoples R China
[4] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
基金
欧洲研究理事会;
关键词
compressible fluid; macroscopic traffic models; Navier-Stokes; viscous Saint-Venant; THE-LEADER MODELS; GLOBAL EXISTENCE; STABILIZATION;
D O I
10.1111/sapm.12623
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a novel particle scheme that provides convergent approximations of a weak solution of the Navier-Stokes equations for the 1-D flow of a viscous compressible fluid. Moreover, it is shown that all differential inequalities that hold for the fluid model are preserved by the particle method: mass is conserved, mechanical energy is decaying, and a modified mechanical energy functional is also decaying. The proposed particle method can be used both as a numerical method and as a method of proving existence of solutions for compressible fluid models.
引用
收藏
页码:1282 / 1331
页数:50
相关论文
共 50 条
[31]   A ghost fluid method for compressible reacting flows with phase change [J].
Houim, Ryan W. ;
Kuo, Kenneth K. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 :865-900
[32]   ADJOINT-BASED PARAMETER AND STATE ESTIMATION IN 1-D MAGNETOHYDRODYNAMIC (MHD) FLOW SYSTEM [J].
Ren, Zhigang ;
Guo, Shan ;
Li, Zhipeng ;
Wu, Zongze .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2018, 14 (04) :1579-1594
[33]   Stability to 1-D thermoelastic Timoshenko beam acting on shear force [J].
Almeida Junior, Dilberto da S. ;
Santos, M. L. ;
Munoz Rivera, J. E. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1233-1249
[34]   An adaptive finite element method for inviscid compressible flow [J].
Nazarov, Murtazo ;
Hoffman, Johan .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 64 (10-12) :1102-1128
[35]   Global Existence of Solutions of the Compressible Viscoelastic Fluid Around a Parallel Flow [J].
Ishigaki, Yusuke .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (04) :2073-2104
[36]   WALL COMPLIANCE EFFECT ON THE FLOW OF COMPRESSIBLE NON-NEWTONIAN FLUID [J].
Hayat, T. ;
Javed, Maryiam ;
Hendi, Awatif A. .
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2012, 12 (01)
[37]   Strict dissipativity of Cattaneo-Christov systems for compressible fluid flow [J].
Angeles, Felipe ;
Malaga, Carlos ;
Plaza, Ramon G. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)
[38]   Global Existence of Solutions of the Compressible Viscoelastic Fluid Around a Parallel Flow [J].
Yusuke Ishigaki .
Journal of Mathematical Fluid Mechanics, 2018, 20 :2073-2104
[39]   Einstein Material Balance and Modeling of the Flow of Compressible Fluid Near the Boundary [J].
A. Ibraguimov ;
E. Zakirov ;
I. Indrupskiy ;
D. Anikeev ;
A. Zhaglova .
Journal of Mathematical Sciences, 2024, 285 (6) :816-834
[40]   An enhanced moving particle semi-implicit method for simulation of incompressible fluid flow and fluid-structure interaction [J].
Cai, Qinghang ;
Chen, Ronghua ;
Guo, Kailun ;
Tian, Wenxi ;
Qiu, Suizheng ;
Su, G. H. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 145 :41-57