Enhanced quantum capacitance of MX4 (M = Fe, Co, Ni, Cu, and Zn; X = N, P) moieties embedded graphene: a DFT study

被引:4
作者
Rani, Babita [1 ]
Bubanja, Vladimir [2 ,3 ]
Jindal, Vijay K. [4 ]
机构
[1] Punjabi Univ, Phys Dept, Patiala 147002, India
[2] Callaghan Innovat, Measurement Stand Lab New Zealand, POB 31310, Wellington 5040, New Zealand
[3] Univ Otago, Dodd Walls Ctr Photon & Quantum Technol, 730 Cumberland St, Dunedin 9016, New Zealand
[4] Panjab Univ, Dept Phys, Chandigarh 160014, India
关键词
density functional theory; supercapacitors; electrode; quantum capacitance; embedded; coordinated; doped graphene; TOTAL-ENERGY CALCULATIONS; TRANSITION-METAL; PERFORMANCE; ELECTRODES; STORAGE; ATOMS;
D O I
10.1088/1361-648X/ace578
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, density functional theory calculations are performed to study the impact of embedding transition metal-(N/P)(4) moieties in graphene on its geometric structure, electronic properties, and quantum capacitance. Enhancement of quantum capacitance of transition metal doped nitrogen/phosphorus pyridinic graphenes is observed, which is directly related to the availability of states near the Fermi level. The findings show that electronic properties and hence quantum capacitance of graphene can be tuned by varying transition metal dopants and/or their coordination environment. Modified graphenes can suitably be chosen as positive or negative electrodes of asymmetric supercapacitors depending upon the values of quantum capacitance and stored charges. Furthermore, quantum capacitance can be enhanced by widening the working voltage window. The results can serve as guidelines for the design of graphene-based electrodes in supercapacitor applications.
引用
收藏
页数:10
相关论文
共 49 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Tunable Electronic and Magnetic Properties of Graphene-Embedded Transition Metal-N4 Complexes: Insight From First-Principles Calculations [J].
Cao, Xinrui ;
Li, Xiao-Fei ;
Hu, Wei .
CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (21) :3239-3245
[3]   First-principles study of metal adatom adsorption on graphene [J].
Chan, Kevin T. ;
Neaton, J. B. ;
Cohen, Marvin L. .
PHYSICAL REVIEW B, 2008, 77 (23)
[4]   High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes [J].
Chen, Yao ;
Zhang, Xiong ;
Zhang, Dacheng ;
Yu, Peng ;
Ma, Yanwei .
CARBON, 2011, 49 (02) :573-580
[5]   Exploring doped or vacancy-modified graphene-based electrodes for applications in asymmetric supercapacitors [J].
da Silva, Debora A. C. ;
Paulista Neto, Antenor J. ;
Pascon, Aline M. ;
Fileti, Eudes E. ;
Fonseca, Leonardo R. C. ;
Zanin, Hudson G. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (07) :3906-3913
[6]   Concentration dependence of the band gaps of phosphorus and sulfur doped graphene [J].
Denis, Pablo A. .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 67 :203-206
[7]   Surface coordination chemistry of graphene: Understanding the coordination of single transition metal atoms [J].
Grasseschi, Daniel ;
Silva, Walner Costa ;
Paiva, Ronald de Souza ;
Starke, Leon Diez ;
Nascimento, Arley Sena .
COORDINATION CHEMISTRY REVIEWS, 2020, 422
[8]   Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices [J].
Han, Sheng ;
Wu, Dongqing ;
Li, Shuang ;
Zhang, Fan ;
Feng, Xinliang .
ADVANCED MATERIALS, 2014, 26 (06) :849-864
[9]   Quantum capacitance of transition metal and nitrogen co-doped graphenes as supercapacitors electrodes: A DFT study [J].
Hu, Riming ;
Shang, Jiaxiang .
APPLIED SURFACE SCIENCE, 2019, 496
[10]   Capacitance of carbon-based electrical double-layer capacitors [J].
Ji, Hengxing ;
Zhao, Xin ;
Qiao, Zhenhua ;
Jung, Jeil ;
Zhu, Yanwu ;
Lu, Yalin ;
Zhang, Li Li ;
MacDonald, Allan H. ;
Ruoff, Rodney S. .
NATURE COMMUNICATIONS, 2014, 5