Blood Cell Detection Method Based on Improved YOLOv5

被引:11
|
作者
Guo, Yecai [1 ,2 ]
Zhang, Mengyao [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China
[2] Wuxi Univ, Sch Elect Informat Engn, Wuxi 214105, Peoples R China
基金
中国国家自然科学基金;
关键词
Blood cell detection; YOLOv5; attention mechanism; loss function;
D O I
10.1109/ACCESS.2023.3290905
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to solve the problems of low accuracy and missed detection in traditional blood cell data detection tasks. This paper proposes and implements the blood cell detection method based on the YOLOv5 (YOLOv5-ALT). The goal of this research is to enhance the accuracy of the detection with the YOLO techniques. This work presents the method overcomes the shortcomings of the existing method by introducing the attention mechanism in the feature channel, modifying SPP module in YOLOv5 backbone feature extraction network, and changing the bounding box regression loss function. Based on the deep learning object detection algorithm, each evaluation index is compared to evaluate the effectiveness of the model. Experimental results show that the mAP@0.5, Precision and Recall of the YOLOv5-ALT reaches 97.4%, 97.9% and 93.5%. This method is more in line with the effectiveness of the blood cell detection task.
引用
收藏
页码:67987 / 67995
页数:9
相关论文
共 50 条
  • [21] Road traffic target detection method based on improved YOLOv5
    Zhou, Huichun
    Xue, Yuming
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1124 - 1128
  • [22] Research on detection method of Tubercle Bacilli based on the improved YOLOv5
    Li, Yonghong
    Zhou, Cheng
    Zhao, Zhiqiang
    Li, Laquan
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (10):
  • [23] Road object detection method based on improved YOLOv5 algorithm
    Wang, Hong-Zhi
    Song, Ming-Xuan
    Cheng, Chao
    Xie, Dong-Xuan
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (09): : 2658 - 2667
  • [24] Rotated Aerial Object Detection Based on Improved YOLOv5 Method
    Fan, Yali
    Chen, Junhai
    Ma, Zhaowei
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 847 - 856
  • [25] Citrus Detection Method Based on Improved YOLOv5 Lightweight Network
    Gao, Xinyang
    Wei, Sheng
    Wen, Zhiqing
    Yu, Tianbiao
    Computer Engineering and Applications, 2023, 59 (11) : 212 - 221
  • [26] Research on an Insulator Defect Detection Method Based on Improved YOLOv5
    Qi, Yifan
    Li, Yongming
    Du, Anyu
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [27] Lightweight tea bud detection method based on improved YOLOv5
    Zhang, Kun
    Yuan, Bohan
    Cui, Jingying
    Liu, Yuyang
    Zhao, Long
    Zhao, Hua
    Chen, Shuangchen
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [28] YOUNG APPLE FRUITS DETECTION METHOD BASED ON IMPROVED YOLOv5
    Du, Yonghui
    Song, Yuepeng
    Guo, Jing
    Ma, Wei
    Ren, Longlong
    INMATEH-AGRICULTURAL ENGINEERING, 2024, 73 (02): : 93 - 93
  • [29] Improved Traffic Sign Detection Method for YOLOv5
    Wei, Qiang
    Hu, Xiaoyang
    Zhao, Hongxin
    Computer Engineering and Applications, 2023, 59 (13) : 229 - 237
  • [30] Fabric Defect Detection Method with Improved YOLOv5
    Zhu, Lei
    Wang, Qianqian
    Yao, Lina
    Pan, Yang
    Zhang, Bo
    Computer Engineering and Applications, 2024, 60 (20) : 302 - 311