Blood Cell Detection Method Based on Improved YOLOv5

被引:12
作者
Guo, Yecai [1 ,2 ]
Zhang, Mengyao [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China
[2] Wuxi Univ, Sch Elect Informat Engn, Wuxi 214105, Peoples R China
基金
中国国家自然科学基金;
关键词
Blood cell detection; YOLOv5; attention mechanism; loss function;
D O I
10.1109/ACCESS.2023.3290905
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to solve the problems of low accuracy and missed detection in traditional blood cell data detection tasks. This paper proposes and implements the blood cell detection method based on the YOLOv5 (YOLOv5-ALT). The goal of this research is to enhance the accuracy of the detection with the YOLO techniques. This work presents the method overcomes the shortcomings of the existing method by introducing the attention mechanism in the feature channel, modifying SPP module in YOLOv5 backbone feature extraction network, and changing the bounding box regression loss function. Based on the deep learning object detection algorithm, each evaluation index is compared to evaluate the effectiveness of the model. Experimental results show that the mAP@0.5, Precision and Recall of the YOLOv5-ALT reaches 97.4%, 97.9% and 93.5%. This method is more in line with the effectiveness of the blood cell detection task.
引用
收藏
页码:67987 / 67995
页数:9
相关论文
共 25 条
[1]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[2]  
Guo M.-H., 2022, arXiv, DOI DOI 10.48550/ARXIV.2111.07624
[3]  
He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[4]   Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) :1904-1916
[5]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[6]  
Li J, 2020, PROC 10 INT WORKSHO, P144, DOI 10.18178/wcse.2020.06.024
[7]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944
[8]  
Liu B., 2022, Highlights Sci. Eng. Technol, V27, P594, DOI [10.54097/hset.v27i.3822, DOI 10.54097/HSET.V27I.3822]
[9]   Path Aggregation Network for Instance Segmentation [J].
Liu, Shu ;
Qi, Lu ;
Qin, Haifang ;
Shi, Jianping ;
Jia, Jiaya .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8759-8768
[10]   SSD: Single Shot MultiBox Detector [J].
Liu, Wei ;
Anguelov, Dragomir ;
Erhan, Dumitru ;
Szegedy, Christian ;
Reed, Scott ;
Fu, Cheng-Yang ;
Berg, Alexander C. .
COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 :21-37