Effects of climate change on vegetation dynamics of the Qinghai-Tibet Plateau, a causality analysis using empirical dynamic modeling

被引:10
|
作者
Li, Zhaoni [1 ,3 ,4 ]
Qu, Hongchun [1 ,2 ,4 ]
Li, Lin [1 ]
Zheng, Jian [1 ]
Wei, Dianwen [5 ]
Wang, Fude [6 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[3] Qinghai Normal Univ, Coll Comp, Xining 810008, Peoples R China
[4] Chongqing Univ Posts & Telecommun, Inst Ecol Safety Forewarning & Control, Chongqing 400065, Peoples R China
[5] Heilongjiang Acad Sci, Inst Nat Resources & Ecol, Harbin 150040, Peoples R China
[6] Inst Forestry Sci Heilongjiang Prov, Harbin 150081, Peoples R China
关键词
Climate change; NDVI; EDM; Causal effects; RESPONSES; NDVI; PRECIPITATION; TEMPERATURE; VARIABILITY; CHINA; INDEX; GRASSLANDS; STABILITY; PATTERNS;
D O I
10.1016/j.heliyon.2023.e16001
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Given the vital role of the Qinghai-Tibet Plateau (QTP) as water tower in Asia and regulator for regional and even global climate, the relationship between climate change and vegetation dy-namics on it has received considerable focused attention. Climate change may influence the vegetation growth on the plateau, but clear empirical evidence of such causal linkages is sparse. Herein, using datasets CRU-TS v4.04 and AVHHR NDVI from 1981 to 2019, we quantify causal effects of climate factors on vegetation dynamics with an empirical dynamical model (EDM) - a nonlinear dynamical systems analysis approach based on state-space reconstruction rather than correlation. Results showed the following: (1) climate change promotes the growth of vegetation on the QTP, and specifically, this favorable influence of temperature is stronger than pre-cipitation's; (2) the direction and strength of climate effects on vegetation varied over time, and the effects are seasonally different; (3) a significant increase in temperature and a slight increase in precipitation are beneficial to vegetation growth, specifically, NDVI will increase within 2% in the next 40 years with the climate trend of warming and humidity. Besides the above results, another interesting finding is that the two seasons in which precipitation strongly influence vegetation in the Three-River Source region (part of the QTP) are spring and winter. This study provides insights into the mechanisms by which climate change affects vegetation growth on the QTP, aiding in the modeling of vegetation dynamics in future scenarios.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Analysis of Vegetation Dynamics and Driving Mechanisms on the Qinghai-Tibet Plateau in the Context of Climate Change
    Chang, Yinghui
    Yang, Chuncheng
    Xu, Li
    Li, Dongfeng
    Shang, Haibin
    Gao, Feiyang
    WATER, 2023, 15 (18)
  • [2] The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau
    Huang, Ke
    Zhang, Yangjian
    Zhu, Juntao
    Liu, Yaojie
    Zu, Jiaxing
    Zhang, Jing
    REMOTE SENSING, 2016, 8 (10)
  • [3] Quantitative Effects of Climate Change on Vegetation Dynamics in Alpine Grassland of Qinghai-Tibet Plateau in a County
    Liu, Hui
    Song, Xiaoyu
    Wen, Wang
    Jia, Qiong
    Zhu, Deming
    ATMOSPHERE, 2022, 13 (02)
  • [4] Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent
    Peng, Jian
    Liu, Zhenhuan
    Liu, Yinghui
    Wu, Jiansheng
    Han, Yinan
    ECOLOGICAL INDICATORS, 2012, 14 (01) : 28 - 39
  • [5] Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau
    Zhou, Decheng
    Hao, Lu
    Kim, John B.
    Liu, Peilong
    Pan, Cen
    Liu, Yongqiang
    Sun, Ge
    CLIMATIC CHANGE, 2019, 156 (1-2) : 31 - 50
  • [6] Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau
    Decheng Zhou
    Lu Hao
    John B. Kim
    Peilong Liu
    Cen Pan
    Yongqiang Liu
    Ge Sun
    Climatic Change, 2019, 156 : 31 - 50
  • [7] The stability of Qinghai-Tibet Plateau ecosystem to climate change
    Wang, Shuren
    Guo, Lanlan
    He, Bin
    Lyu, Yanli
    Li, Tiewei
    PHYSICS AND CHEMISTRY OF THE EARTH, 2020, 115
  • [8] Climate Change and Livestock Management Drove Extensive Vegetation Recovery in the Qinghai-Tibet Plateau
    Liu, Enqin
    Xiao, Xiangming
    Shao, Huaiyong
    Yang, Xin
    Zhang, Yali
    Yang, Yang
    REMOTE SENSING, 2021, 13 (23)
  • [9] Spatiotemporal vegetation cover variations in the Qinghai-Tibet Plateau under global climate change
    Xu XingKui
    Chen Hong
    Levy, Jason K.
    CHINESE SCIENCE BULLETIN, 2008, 53 (06): : 915 - 922