Analysis of Turbulence Driven Particle Transport in PANTA by Using Multi-Field Singular Value Decomposition

被引:3
作者
Kodahara, Takumi [1 ]
Sasaki, Makoto [1 ]
Kawachi, Yuichi [2 ]
Jajima, Yuki [1 ]
Kobayashi, Tatsuya [2 ]
Yamada, Takuma [3 ,4 ]
Arakawa, Hiroyuki [5 ]
Fujisawa, Akihide [3 ,6 ]
机构
[1] Nihon Univ, Coll Ind Technol, Narashino 2740072, Japan
[2] Natl Inst Fus Sci, Toki 5095202, Japan
[3] Kyushu Univ, Res Ctr Plasma Turbulence, Kasuga 8168580, Japan
[4] Kyushu Univ, Fac Arts & Sci, Fukuoka 8190395, Japan
[5] Kyushu Univ, Fac Med Sci, Dept Hlth Sci, Fukuoka 8128582, Japan
[6] Kyushu Univ, Res Inst Appl Mech, Kasuga 8168580, Japan
来源
PLASMA AND FUSION RESEARCH | 2023年 / 18卷
关键词
magnetized plasma; data-driven method; singular value decomposition; drift wave; particle transport;
D O I
10.1585/pfr.18.1202036
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Multi-field singular value decompositions (SVDs) is applied to turbulence obtained in a cylindrical mag-netized plasma, PANTA. This method enables us to obtain the spatial mode structures with common temporal evolution of different physical quantities, such as the fluctuations of density and flows. Turbulence driven particle transport is evaluated by the method. It is shown that only the coupling of the same mode drives the transport, which stems from the orthogonality of the SVD. Thanks to this characteristics, the number of degrees of freedom which plays roles for the transport dynamics could be significantly reduced.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Analysis of Power System Harmonics Using Singular Value Decomposition, Least Square Estimation and FFT
    Rehman, Bilawal
    Ahmad, Masood
    Hussain, Jawad
    2014 INTERNATIONAL CONFERENCE ON ENERGY SYSTEMS AND POLICIES (ICESP), 2014,
  • [32] Multi-Frequency Planar Near-Field Scanning by Means of Singular-Value Decomposition (SVD) Optimization
    Capozzoli, A.
    Curcio, C.
    Liseno, A.
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2011, 53 (06) : 212 - 221
  • [33] Adaptive hyperspectral pixel unmixing using best bands analysis and DC insensitive singular value decomposition
    Ball, JE
    Bruce, LM
    Younan, NH
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 4299 - 4303
  • [34] Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value decomposition
    Hatch, D. R.
    del-Castillo-Negrete, D.
    Terry, P. W.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (11) : 4234 - 4256
  • [35] Hybrid Threshold Denoising Framework Using Singular Value Decomposition for Side-Channel Analysis Preprocessing
    Wang, Yuanzhen
    Zhang, Hongxin
    Fang, Xing
    Cui, Xiaotong
    Ning, Wenxu
    Wang, Danzhi
    Fan, Fan
    Shu, Lei
    ENTROPY, 2023, 25 (08)
  • [36] CHEMOMETRIC ANALYSIS OF DIFFUSE REFLECTANCE SPECTRAL DATA USING SINGULAR VALUE DECOMPOSITION FOR BLOOD GLUCOSE DETECTION
    Suryakala, S. Vasanthadev
    Prince, Shanthi
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2018, 30 (05):
  • [37] Infrared Thermographic Image Analysis using Singular Value Decomposition for Thinning Detection of Containment Liner Plate
    Park, Hana
    Kim, Wontae
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2020, 40 (06) : 428 - 434
  • [38] Analysis of ultrasonic non destructive evaluation data using singular value decomposition of the Hankel data matrix
    Hanshaw, TC
    Hsu, CS
    Anderson, MJ
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 3672 - 3677
  • [39] Resolving cold start and sparse data challenge in recommender systems using multi-level singular value decomposition
    Rodpysh, Keyvan Vahidy
    Mirabedini, Seyed Javad
    Banirostam, Touraj
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 94
  • [40] A new video watermarking using redundant discrete wavelet in singular value decomposition domain with multi-objective optimization
    Kumar, Pala Mahesh
    Srinivas, Kalyanapu
    Prabhakar, Bitla
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (13)