Training circuit-based quantum classifiers through memetic algorithms

被引:6
作者
Acampora, Giovanni [1 ]
Chiatto, Angela [1 ]
Vitiello, Autilia [1 ]
机构
[1] Univ Naples Federico II, Dept Phys Ettore Pancini, Naples, Italy
关键词
Quantum machine learning; Variational quantum circuits; Quantum classifiers; Memetic algorithms; Optimization;
D O I
10.1016/j.patrec.2023.04.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Among the ready-to-implement quantum algorithms, Variational Quantum Circuits (VQCs) play a key role in several applications, including machine learning. Their strength lies in the use of a parameterized quantum circuit that is trained by means of an optimization algorithm run on a classical computer. In such a scenario, there is a strong need to design appropriate classical optimization schemes that deal efficiently with VQCs and pave the way for quantum advantage in machine learning. Among possible optimization schemes, those based on evolutionary computation are finding increasing interest, given the unconventional and nonanalytical nature of the problem to be solved. This paper proposes to apply memetic algorithms to train VQCs used as quantum classifiers and shows the benefits of exploiting this evolutionary optimization technique through a comparative experimental session.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:32 / 38
页数:7
相关论文
共 23 条
  • [1] Training Variational Quantum Circuits through Genetic Algorithms
    Acampora, Giovanni
    Chiatto, Angela
    Vitiello, Autilia
    [J]. 2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [2] Memetic algorithms for mapping p-body interacting systems in effective quantum 2-body Hamiltonians
    Acampora, Giovanni
    Cataudella, Vittorio
    Hegde, Pratibha Raghupati
    Lucignano, Procolo
    Passarelli, Gianluca
    Vitiello, Autilia
    [J]. APPLIED SOFT COMPUTING, 2021, 110
  • [3] A Competent Memetic Algorithm for Learning Fuzzy Cognitive Maps
    Acampora, Giovanni
    Pedrycz, Witold
    Vitiello, Autilia
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (06) : 2397 - 2411
  • [4] Acampora G, 2012, IEEE INT CONF FUZZY
  • [5] Acampora G, 2011, IEEE INT CONF FUZZY, P1783
  • [6] Parameterized quantum circuits as machine learning models
    Benedetti, Marcello
    Lloyd, Erika
    Sack, Stefan
    Fiorentini, Mattia
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
  • [7] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202
  • [8] Variational quantum algorithms
    Cerezo, M.
    Arrasmith, Andrew
    Babbush, Ryan
    Benjamin, Simon C.
    Endo, Suguru
    Fujii, Keisuke
    McClean, Jarrod R.
    Mitarai, Kosuke
    Yuan, Xiao
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (09) : 625 - 644
  • [9] Cost function dependent barren plateaus in shallow parametrized quantum circuits
    Cerezo, M.
    Sone, Akira
    Volkoff, Tyler
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] Hybrid models for intraday stock price forecasting based on artificial neural networks and metaheuristic algorithms *
    Chandar, Kumar S.
    [J]. PATTERN RECOGNITION LETTERS, 2021, 147 : 124 - 133