Single-cell RNA-seq data clustering by deep information fusion

被引:3
|
作者
Ren, Liangrui [2 ]
Wang, Jun [3 ]
Li, Wei [4 ]
Guo, Maozu [5 ]
Yu, Guoxian [1 ,2 ]
机构
[1] Shandong Univ, Sch Software, Jinan 250101, Peoples R China
[2] Shandong Univ, Sch Software, Jinan, Peoples R China
[3] Shandong Univ, Joint SDU NTU Ctr Artificial Intelligence Res C FA, Jinan, Peoples R China
[4] Shandong Univ, Sch Control Sci & Engn, Jinan, Peoples R China
[5] Beijing Univ Civil Engn & Architecture, Sch Elect & Informat Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
single-cell RNA-seq clustering; graph convolution network; deep auto-encoder; ZINB; transcriptomics; VISUALIZATION; COMPLEX;
D O I
10.1093/bfgp/elad017
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Determining cell types by single-cell transcriptomics data is fundamental for downstream analysis. However, cell clustering and data imputation still face the computation challenges, due to the high dropout rate, sparsity and dimensionality of single-cell data. Although some deep learning based solutions have been proposed to handle these challenges, they still can not leverage gene attribute information and cell topology in a sensible way to explore the consistent clustering. In this paper, we present scDeepFC, a deep information fusion-based single-cell data clustering method for cell clustering and data imputation. Specifically, scDeepFC uses a deep auto-encoder (DAE) network and a deep graph convolution network to embed high-dimensional gene attribute information and high-order cell-cell topological information into different low-dimensional representations, and then fuses them to generate a more comprehensive and accurate consensus representation via a deep information fusion network. In addition, scDeepFC integrates the zero-inflated negative binomial (ZINB) into DAE to model the dropout events. By jointly optimizing the ZINB loss and cell graph reconstruction loss, scDeepFC generates a salient embedding representation for clustering cells and imputing missing data. Extensive experiments on real single-cell datasets prove that scDeepFC outperforms other popular single-cell analysis methods. Both the gene attribute and cell topology information can improve the cell clustering.
引用
收藏
页码:128 / 137
页数:10
相关论文
共 50 条
  • [41] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19
  • [42] Emerging deep learning methods for single-cell RNA-seq data analysis
    Zheng, Jie
    Wang, Ke
    QUANTITATIVE BIOLOGY, 2019, 7 (04) : 247 - 254
  • [43] deepMc: Deep Matrix Completion for Imputation of Single-Cell RNA-seq Data
    Mongia, Aanchal
    Sengupta, Debarka
    Majumdar, Angshul
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2020, 27 (07) : 1011 - 1019
  • [44] Emerging deep learning methods for single-cell RNA-seq data analysis
    Jie Zheng
    Ke Wang
    Quantitative Biology, 2019, 7 (04) : 247 - 254
  • [45] Comparison of transformations for single-cell RNA-seq data
    Constantin Ahlmann-Eltze
    Wolfgang Huber
    Nature Methods, 2023, 20 : 665 - 672
  • [46] Exploring Additional Valuable Information From Single-Cell RNA-Seq Data
    Li, Yunjin
    Xu, Qiyue
    Wu, Duojiao
    Chen, Geng
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [47] An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
    Sun, Xifang
    Sun, Shiquan
    Yang, Sheng
    CELLS, 2019, 8 (10)
  • [48] Comparison of transformations for single-cell RNA-seq data
    Ahlmann-Eltze, Constantin
    Huber, Wolfgang
    NATURE METHODS, 2023, 20 (05) : 665 - +
  • [49] scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network
    Wang, Jing
    Xia, Junfeng
    Wang, Haiyun
    Su, Yansen
    Zheng, Chun-Hou
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [50] Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations
    Lei, Tianyuan
    Chen, Ruoyu
    Zhang, Shaoqiang
    Chen, Yong
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)