Single-cell RNA-seq data clustering by deep information fusion

被引:3
|
作者
Ren, Liangrui [2 ]
Wang, Jun [3 ]
Li, Wei [4 ]
Guo, Maozu [5 ]
Yu, Guoxian [1 ,2 ]
机构
[1] Shandong Univ, Sch Software, Jinan 250101, Peoples R China
[2] Shandong Univ, Sch Software, Jinan, Peoples R China
[3] Shandong Univ, Joint SDU NTU Ctr Artificial Intelligence Res C FA, Jinan, Peoples R China
[4] Shandong Univ, Sch Control Sci & Engn, Jinan, Peoples R China
[5] Beijing Univ Civil Engn & Architecture, Sch Elect & Informat Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
single-cell RNA-seq clustering; graph convolution network; deep auto-encoder; ZINB; transcriptomics; VISUALIZATION; COMPLEX;
D O I
10.1093/bfgp/elad017
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Determining cell types by single-cell transcriptomics data is fundamental for downstream analysis. However, cell clustering and data imputation still face the computation challenges, due to the high dropout rate, sparsity and dimensionality of single-cell data. Although some deep learning based solutions have been proposed to handle these challenges, they still can not leverage gene attribute information and cell topology in a sensible way to explore the consistent clustering. In this paper, we present scDeepFC, a deep information fusion-based single-cell data clustering method for cell clustering and data imputation. Specifically, scDeepFC uses a deep auto-encoder (DAE) network and a deep graph convolution network to embed high-dimensional gene attribute information and high-order cell-cell topological information into different low-dimensional representations, and then fuses them to generate a more comprehensive and accurate consensus representation via a deep information fusion network. In addition, scDeepFC integrates the zero-inflated negative binomial (ZINB) into DAE to model the dropout events. By jointly optimizing the ZINB loss and cell graph reconstruction loss, scDeepFC generates a salient embedding representation for clustering cells and imputing missing data. Extensive experiments on real single-cell datasets prove that scDeepFC outperforms other popular single-cell analysis methods. Both the gene attribute and cell topology information can improve the cell clustering.
引用
收藏
页码:128 / 137
页数:10
相关论文
共 50 条
  • [1] scDFC: A deep fusion clustering method for single-cell RNA-seq data
    Hu, Dayu
    Liang, Ke
    Zhou, Sihang
    Tu, Wenxuan
    Liu, Meng
    Liu, Xinwang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [2] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [3] scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks
    Liu, Tianxiang
    Jia, Cangzhi
    Bi, Yue
    Guo, Xudong
    Zou, Quan
    Li, Fuyi
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [4] Multiobjective Deep Clustering and Its Applications in Single-cell RNA-seq Data
    Wang, Yunhe
    Bian, Chuang
    Wong, Ka-Chun
    Li, Xiangtao
    Yang, Shengxiang
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (08): : 5016 - 5027
  • [5] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [6] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [7] A deep matrix factorization based approach for single-cell RNA-seq data clustering
    Liang, Zhenlan
    Zheng, Ruiqing
    Chen, Siqi
    Yan, Xuhua
    Li, Min
    METHODS, 2022, 205 : 114 - 122
  • [8] Deep single-cell RNA-seq data clustering with graph prototypical contrastive learning
    Lee, Junseok
    Kim, Sungwon
    Hyun, Dongmin
    Lee, Namkyeong
    Kim, Yejin
    Park, Chanyoung
    BIOINFORMATICS, 2023, 39 (06)
  • [9] An active learning approach for clustering single-cell RNA-seq data
    Lin, Xiang
    Liu, Haoran
    Wei, Zhi
    Roy, Senjuti Basu
    Gao, Nan
    LABORATORY INVESTIGATION, 2022, 102 (03) : 227 - 235
  • [10] Impact of similarity metrics on single-cell RNA-seq data clustering
    Kim, Taiyun
    Chen, Irene Rui
    Lin, Yingxin
    Wang, Andy Yi-Yang
    Yang, Jean Yee Hwa
    Yang, Pengyi
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (06) : 2316 - 2326