Automated Atmospheric Correction of Nanosatellites Using Coincident Ocean Color Radiometer Data

被引:4
|
作者
McCarthy, Sean [1 ]
Crawford, Summer [2 ]
Wood, Christopher [1 ]
Lewis, Mark D. [1 ]
Jolliff, Jason K. [1 ]
Martinolich, Paul [3 ]
Ladner, Sherwin [1 ]
Lawson, Adam [1 ]
Montes, Marcos [4 ]
机构
[1] US Naval Res Lab, Stennis Space Ctr, Washington, MS 39556 USA
[2] Stennis Space Ctr, Naval Res Enterprise Internship Program NREIP, Hancock Cty, MS 39556 USA
[3] Peraton, Herndon, VA 20171 USA
[4] US Naval Res Lab, Washington, DC 20375 USA
关键词
ocean color remote sensing; atmospheric correction; nanosatellites; Planet; PlanetScope; MOBY; VIIRS; water-leaving radiance; machine learning; model predictions; AEROSOL OPTICAL-THICKNESS; WATER-LEAVING RADIANCE; RETRIEVAL; CUBESAT; VALIDATION; MISSION; SEAWIFS; ICE;
D O I
10.3390/jmse11030660
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Here we present a machine-learning-based method for utilizing traditional ocean-viewing satellites to perform automated atmospheric correction of nanosatellite data. These sensor convolution techniques are required because nanosatellites do not usually possess the wavelength combinations required to atmospherically correct upwelling radiance data for oceanographic applications; however, nanosatellites do provide superior ground-viewing spatial resolution (similar to 3 m). Coincident multispectral data from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (Suomi NPP VIIRS; referred to herein as "VIIRS") were used to remove atmospheric contamination at each of the nanosatellite's visible wavelengths to yield an estimate of spectral water-leaving radiance [L-w(l)], which is the basis for surface ocean optical products. Machine learning (ML) algorithms (KNN, decision tree regressors) were applied to determine relationships between L-w and top-of-atmosphere (L-t)/Rayleigh (L-r) radiances within VIIRS training data, and then applied to test cases for (1) the Marine Optical Buoy (MOBY) in Hawaii and (2) the AErosol RObotic Network Ocean Color (AERONET-OC), Venice, Italy. For the test cases examined, ML-based methods appeared to improve statistical results when compared to alternative dark spectrum fitting (DSF) methods. The results suggest that ML-based sensor convolution techniques offer a viable path forward for the oceanographic application of nanosatellite data streams.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Sensor performance requirements for atmospheric correction of satellite ocean color remote sensing
    Wang, Menghua
    Gordon, Howard R.
    OPTICS EXPRESS, 2018, 26 (06): : 7390 - 7403
  • [42] Validation of Ocean Color Sensors Using a Profiling Hyperspectral Radiometer
    Ondrusek, M. E.
    Stengel, E.
    Rella, M. Ampollo
    Goode, W.
    Ladner, S.
    Feinholz, M.
    OCEAN SENSING AND MONITORING VI, 2014, 9111
  • [43] Atmospheric correction of ocean color imagery over turbid coastal waters using active and passive remote sensing
    田礼乔
    陈晓玲
    张亭禄
    龚威
    陈莉琼
    陆建忠
    赵羲
    张伟
    于之锋
    Journal of Oceanology and Limnology, 2009, (01) : 124 - 128
  • [44] Atmospheric correction of ocean color imagery over turbid coastal waters using active and passive remote sensing
    Liqiao Tian
    Xiaoling Chen
    Tinglu Zhang
    Wei Gong
    Liqiong Chen
    Jianzhong Lu
    Xi Zhao
    Wei Zhang
    Zhifeng Yu
    Chinese Journal of Oceanology and Limnology, 2009, 27 : 124 - 128
  • [45] Determining switching threshold for NIR-SWIR combined atmospheric correction algorithm of ocean color remote sensing
    Liu, Huizeng
    Zhou, Qiming
    Li, Qingquan
    Hu, Shuibo
    Shi, Tiezhu
    Wu, Guofeng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 153 : 59 - 73
  • [46] Ocean color atmospheric correction methods in view of usability for different optical water types
    Hieronymi, Martin
    Bi, Shun
    Mueller, Dagmar
    Schuett, Eike M.
    Behr, Daniel
    Brockmann, Carsten
    Lebreton, Carole
    Steinmetz, Francois
    Stelzer, Kerstin
    Vanhellemont, Quinten
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [47] ADEOS-II/GLI ocean color atmospheric correction: early phase result
    Fukushima, H
    Toratani, M
    Tanaka, A
    Chen, WZ
    Murakami, H
    OCEAN REMOTE SENSING AND IMAGING II, 2003, 5155 : 91 - 99
  • [48] Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region
    Wang, Menghua
    Shi, Wei
    Jiang, Lide
    OPTICS EXPRESS, 2012, 20 (02): : 741 - 753
  • [49] Atmospheric correction of geostationary ocean color imager data over turbid coastal waters under high solar zenith angles
    Li, Hao
    He, Xianqiang
    Shanmugam, Palanisamy
    Bai, Yan
    Jin, Xuchen
    Wang, Zhihong
    Zhang, Yifan
    Wang, Difeng
    Gong, Fang
    Zhao, Min
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 218 : 166 - 180
  • [50] Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters
    He, Xianqiang
    Bai, Yan
    Pan, Delu
    Tang, Junwu
    Wang, Difeng
    OPTICS EXPRESS, 2012, 20 (18): : 20754 - 20770