Automated Atmospheric Correction of Nanosatellites Using Coincident Ocean Color Radiometer Data

被引:4
|
作者
McCarthy, Sean [1 ]
Crawford, Summer [2 ]
Wood, Christopher [1 ]
Lewis, Mark D. [1 ]
Jolliff, Jason K. [1 ]
Martinolich, Paul [3 ]
Ladner, Sherwin [1 ]
Lawson, Adam [1 ]
Montes, Marcos [4 ]
机构
[1] US Naval Res Lab, Stennis Space Ctr, Washington, MS 39556 USA
[2] Stennis Space Ctr, Naval Res Enterprise Internship Program NREIP, Hancock Cty, MS 39556 USA
[3] Peraton, Herndon, VA 20171 USA
[4] US Naval Res Lab, Washington, DC 20375 USA
关键词
ocean color remote sensing; atmospheric correction; nanosatellites; Planet; PlanetScope; MOBY; VIIRS; water-leaving radiance; machine learning; model predictions; AEROSOL OPTICAL-THICKNESS; WATER-LEAVING RADIANCE; RETRIEVAL; CUBESAT; VALIDATION; MISSION; SEAWIFS; ICE;
D O I
10.3390/jmse11030660
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Here we present a machine-learning-based method for utilizing traditional ocean-viewing satellites to perform automated atmospheric correction of nanosatellite data. These sensor convolution techniques are required because nanosatellites do not usually possess the wavelength combinations required to atmospherically correct upwelling radiance data for oceanographic applications; however, nanosatellites do provide superior ground-viewing spatial resolution (similar to 3 m). Coincident multispectral data from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (Suomi NPP VIIRS; referred to herein as "VIIRS") were used to remove atmospheric contamination at each of the nanosatellite's visible wavelengths to yield an estimate of spectral water-leaving radiance [L-w(l)], which is the basis for surface ocean optical products. Machine learning (ML) algorithms (KNN, decision tree regressors) were applied to determine relationships between L-w and top-of-atmosphere (L-t)/Rayleigh (L-r) radiances within VIIRS training data, and then applied to test cases for (1) the Marine Optical Buoy (MOBY) in Hawaii and (2) the AErosol RObotic Network Ocean Color (AERONET-OC), Venice, Italy. For the test cases examined, ML-based methods appeared to improve statistical results when compared to alternative dark spectrum fitting (DSF) methods. The results suggest that ML-based sensor convolution techniques offer a viable path forward for the oceanographic application of nanosatellite data streams.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay
    Werdell, P. Jeremy
    Franz, Bryan A.
    Bailey, Sean W.
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (10) : 2238 - 2247
  • [32] Atmospheric Correction of Satellite Ocean Color Remote Sensing in the Presence of High Aerosol Loads
    Mao, Zhihua
    Tao, Bangyi
    Chen, Peng
    Chen, Jianyu
    Hao, Zengzhou
    Zhu, Qiankun
    Huang, Haiqing
    REMOTE SENSING, 2020, 12 (01)
  • [33] Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM) Data in Coastal Case 2 Waters
    Dash, Padmanava
    Walker, Nan
    Mishra, Deepak
    D'Sa, Eurico
    Ladner, Sherwin
    REMOTE SENSING, 2012, 4 (06): : 1716 - 1740
  • [34] ATMOSPHERIC CORRECTION APPROACH FOR SABIA-MAR OCEAN COLOR MISSION
    Tauro, Carolina
    Labanda, Martin
    Floreani, Raul
    Valvassori, Gaston
    Avila, Milagros
    Godoy, Facundo
    Tan, Jing
    Frouin, Robert
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3954 - 3957
  • [35] Decoupling error for the atmospheric correction in ocean color remote sensing algorithms
    Zhai, Peng-Wang
    Hu, Yongxiang
    Trepte, Charles R.
    Lucker, Patricia L.
    Josset, Damien B.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2010, 111 (12-13) : 1958 - 1963
  • [36] Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI)
    Jae-Hyun Ahn
    Young-Je Park
    Joo-Hyung Ryu
    Boram Lee
    Im Sang Oh
    Ocean Science Journal, 2012, 47 (3) : 247 - 259
  • [37] Atmospheric correction of directional polarized ocean color sensors
    Yang, Xiaofeng
    Gu, Xingfa
    Chen, Liangfu
    Zhang, Haibo
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 987 - 989
  • [38] A Layer Removal Scheme for Atmospheric Correction of Satellite Ocean Color Data in Coastal Regions
    Mao, Zhihua
    Tao, Bangyi
    Chen, Jianyu
    Chen, Peng
    Hao, Zengzhou
    Zhu, Qiankun
    Huang, Haiqing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1382 - 1391
  • [39] Water environment remote sensing atmospheric correction of Geostationary Ocean Color Imager data over turbid coastal waters in the Bohai Sea using artificial neural networks
    Tian, Liqiao
    Zeng, Qun
    Tian, Xiaojuan
    Li, Jian
    Wang, Zheng
    Li, Wenbo
    CURRENT SCIENCE, 2016, 110 (06): : 1079 - 1085
  • [40] The use of MODIS 250 m bands to improve the MODIS 1 km ocean color atmospheric correction algorithm in turbid water
    Chen, Jun
    Quan, Wenting
    Wen, Zhenhe
    Cui, Tingwei
    ADVANCES IN SPACE RESEARCH, 2013, 51 (09) : 1750 - 1760