Automated Atmospheric Correction of Nanosatellites Using Coincident Ocean Color Radiometer Data

被引:4
作者
McCarthy, Sean [1 ]
Crawford, Summer [2 ]
Wood, Christopher [1 ]
Lewis, Mark D. [1 ]
Jolliff, Jason K. [1 ]
Martinolich, Paul [3 ]
Ladner, Sherwin [1 ]
Lawson, Adam [1 ]
Montes, Marcos [4 ]
机构
[1] US Naval Res Lab, Stennis Space Ctr, Washington, MS 39556 USA
[2] Stennis Space Ctr, Naval Res Enterprise Internship Program NREIP, Hancock Cty, MS 39556 USA
[3] Peraton, Herndon, VA 20171 USA
[4] US Naval Res Lab, Washington, DC 20375 USA
关键词
ocean color remote sensing; atmospheric correction; nanosatellites; Planet; PlanetScope; MOBY; VIIRS; water-leaving radiance; machine learning; model predictions; AEROSOL OPTICAL-THICKNESS; WATER-LEAVING RADIANCE; RETRIEVAL; CUBESAT; VALIDATION; MISSION; SEAWIFS; ICE;
D O I
10.3390/jmse11030660
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Here we present a machine-learning-based method for utilizing traditional ocean-viewing satellites to perform automated atmospheric correction of nanosatellite data. These sensor convolution techniques are required because nanosatellites do not usually possess the wavelength combinations required to atmospherically correct upwelling radiance data for oceanographic applications; however, nanosatellites do provide superior ground-viewing spatial resolution (similar to 3 m). Coincident multispectral data from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (Suomi NPP VIIRS; referred to herein as "VIIRS") were used to remove atmospheric contamination at each of the nanosatellite's visible wavelengths to yield an estimate of spectral water-leaving radiance [L-w(l)], which is the basis for surface ocean optical products. Machine learning (ML) algorithms (KNN, decision tree regressors) were applied to determine relationships between L-w and top-of-atmosphere (L-t)/Rayleigh (L-r) radiances within VIIRS training data, and then applied to test cases for (1) the Marine Optical Buoy (MOBY) in Hawaii and (2) the AErosol RObotic Network Ocean Color (AERONET-OC), Venice, Italy. For the test cases examined, ML-based methods appeared to improve statistical results when compared to alternative dark spectrum fitting (DSF) methods. The results suggest that ML-based sensor convolution techniques offer a viable path forward for the oceanographic application of nanosatellite data streams.
引用
收藏
页数:22
相关论文
共 37 条
[1]   New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans [J].
Ahmad, Ziauddin ;
Franz, Bryan A. ;
McClain, Charles R. ;
Kwiatkowska, Ewa J. ;
Werdell, Jeremy ;
Shettle, Eric P. ;
Holben, Brent N. .
APPLIED OPTICS, 2010, 49 (29) :5545-5560
[2]   Volcano Monitoring from Space Using High-Cadence Planet CubeSat Images Applied to Fuego Volcano, Guatemala [J].
Aldeghi, Anna ;
Carn, Simon ;
Escobar-Wolf, Rudiger ;
Groppelli, Gianluca .
REMOTE SENSING, 2019, 11 (18)
[3]   SWEET CubeSat - Water detection and water quality monitoring for the 21st century [J].
Antonini, Kelly ;
Langer, Martin ;
Farid, Ahmed ;
Walter, Ulrich .
ACTA ASTRONAUTICA, 2017, 140 :10-17
[4]   CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Precision Agriculture [J].
Aragon, Bruno ;
Houborg, Rasmus ;
Tu, Kevin ;
Fisher, Joshua B. ;
McCabe, Matthew .
REMOTE SENSING, 2018, 10 (12)
[5]   Coral reef atoll assessment in the South China Sea using Planet Dove satellites [J].
Asner, Gregory P. ;
Martin, Roberta E. ;
Mascaro, Joseph .
REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2017, 3 (02) :57-65
[6]   A multi-sensor approach for the on-orbit validation of ocean color satellite data products [J].
Bailey, Sean W. ;
Werdell, P. Jeremy .
REMOTE SENSING OF ENVIRONMENT, 2006, 102 (1-2) :12-23
[7]   The TUBIN nanosatellite mission for wildfire detection in thermal infrared [J].
Barschke M.F. ;
Bartholomäus J. ;
Gordon K. ;
Lehmann M. ;
Brieß K. .
CEAS Space Journal, 2017, 9 (02) :183-194
[8]   Delineation of management zones in agricultural fields using cover crop biomass estimates from PlanetScope data [J].
Breunig, Fabio Marcelo ;
Galvao, Lenio Soares ;
Dalagnol, Ricardo ;
Dauve, Carlos Eduardo ;
Parraga, Adriane ;
Santi, Antonio Luiz ;
Della Flora, Diandra Pinto ;
Chen, Shuisen .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 85
[9]   Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery [J].
Cooley, Sarah W. ;
Smith, Laurence C. ;
Ryan, Jonathan C. ;
Pitcher, Lincoln H. ;
Pavelsky, Tamlin M. .
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (04) :2111-2120
[10]   Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery [J].
Cooley, Sarah W. ;
Smith, Laurence C. ;
Stepan, Leon ;
Mascaro, Joseph .
REMOTE SENSING, 2017, 9 (12)