Automated Atmospheric Correction of Nanosatellites Using Coincident Ocean Color Radiometer Data

被引:4
|
作者
McCarthy, Sean [1 ]
Crawford, Summer [2 ]
Wood, Christopher [1 ]
Lewis, Mark D. [1 ]
Jolliff, Jason K. [1 ]
Martinolich, Paul [3 ]
Ladner, Sherwin [1 ]
Lawson, Adam [1 ]
Montes, Marcos [4 ]
机构
[1] US Naval Res Lab, Stennis Space Ctr, Washington, MS 39556 USA
[2] Stennis Space Ctr, Naval Res Enterprise Internship Program NREIP, Hancock Cty, MS 39556 USA
[3] Peraton, Herndon, VA 20171 USA
[4] US Naval Res Lab, Washington, DC 20375 USA
关键词
ocean color remote sensing; atmospheric correction; nanosatellites; Planet; PlanetScope; MOBY; VIIRS; water-leaving radiance; machine learning; model predictions; AEROSOL OPTICAL-THICKNESS; WATER-LEAVING RADIANCE; RETRIEVAL; CUBESAT; VALIDATION; MISSION; SEAWIFS; ICE;
D O I
10.3390/jmse11030660
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Here we present a machine-learning-based method for utilizing traditional ocean-viewing satellites to perform automated atmospheric correction of nanosatellite data. These sensor convolution techniques are required because nanosatellites do not usually possess the wavelength combinations required to atmospherically correct upwelling radiance data for oceanographic applications; however, nanosatellites do provide superior ground-viewing spatial resolution (similar to 3 m). Coincident multispectral data from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (Suomi NPP VIIRS; referred to herein as "VIIRS") were used to remove atmospheric contamination at each of the nanosatellite's visible wavelengths to yield an estimate of spectral water-leaving radiance [L-w(l)], which is the basis for surface ocean optical products. Machine learning (ML) algorithms (KNN, decision tree regressors) were applied to determine relationships between L-w and top-of-atmosphere (L-t)/Rayleigh (L-r) radiances within VIIRS training data, and then applied to test cases for (1) the Marine Optical Buoy (MOBY) in Hawaii and (2) the AErosol RObotic Network Ocean Color (AERONET-OC), Venice, Italy. For the test cases examined, ML-based methods appeared to improve statistical results when compared to alternative dark spectrum fitting (DSF) methods. The results suggest that ML-based sensor convolution techniques offer a viable path forward for the oceanographic application of nanosatellite data streams.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Evaluation of VIIRS ocean color data using measurements from the AERONET-OC sites
    Ahmed, Samir
    Gilerson, Alex
    Hlaing, Soe
    Ioannou, Ioannis
    Wang, Menghua
    Weidemann, Alan
    Arnone, Robert A.
    OCEAN SENSING AND MONITORING V, 2013, 8724
  • [2] Evaluation of ADEOS-II GLI ocean color atmospheric correction using SIMBADA handheld radiometer data
    Fukushima, Hajime
    Toratani, Mitsuhiro
    Murakami, Hiroshi
    Deschamps, Pierre-Yves
    Frouin, Robert
    Tanaka, Akihiko
    JOURNAL OF OCEANOGRAPHY, 2007, 63 (03) : 533 - 543
  • [3] Effects of Earth curvature on atmospheric correction for ocean color remote sensing
    He, Xianqiang
    Stamnes, Knut
    Bai, Yan
    Li, Wei
    Wang, Difeng
    REMOTE SENSING OF ENVIRONMENT, 2018, 209 : 118 - 133
  • [4] Evaluation of ADEOS-II GLI ocean color atmospheric correction using SIMBADA handheld radiometer data
    Hajime Fukushima
    Mitsuhiro Toratani
    Hiroshi Murakami
    Pierre-Yves Deschamps
    Robert Frouin
    Akihiko Tanaka
    Journal of Oceanography, 2007, 63 : 533 - 543
  • [5] Optimal estimation framework for ocean color atmospheric correction and pixel-level uncertainty quantification
    Ibrahim, Amir
    Franz, Bryan A.
    Sayer, Andrew M.
    Knobelspiesse, Kirk
    Zhang, Minwei
    Bailey, Sean W.
    McKinna, Lachlan I. W.
    Gao, Meng
    Werdell, P. Jeremy
    APPLIED OPTICS, 2022, 61 (22) : 6453 - 6475
  • [6] Radiometric calibration of ocean color satellite sensors using AERONET-OC data
    Hlaing, Soe
    Gilerson, Alexander
    Foster, Robert
    Wang, Menghua
    Arnone, Robert
    Ahmed, Sam
    OPTICS EXPRESS, 2014, 22 (19): : 23385 - 23401
  • [7] Evolution of Ocean Color Atmospheric Correction: 1970-2005
    Gordon, Howard R.
    REMOTE SENSING, 2021, 13 (24)
  • [8] Revisiting effectiveness of turbidity index for the switching scheme of NIR-SWIR combined ocean color atmospheric correction algorithm
    Liu, Huizeng
    Hu, Shuibo
    Zhou, Qiming
    Li, Qingquan
    Wu, Guofeng
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 76 : 1 - 9
  • [9] The atmospheric effect correction of the Ocean Color Imager of ROCSAT-1 - Simulations and using SeaWiFS data as the example
    Liu, GR
    Huang, SJ
    Kuo, TH
    Chen, WJ
    Tseng, CY
    TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 1999, : 99 - 114
  • [10] Multiband Atmospheric Correction Algorithm for Ocean Color Retrievals
    Ibrahim, Amir
    Franz, Bryan A.
    Ahmad, Ziauddin
    Bailey, Sean W.
    FRONTIERS IN EARTH SCIENCE, 2019, 7