Surface modification of gold by carbazole dendrimers for improved carbon dioxide electroreduction

被引:6
作者
Yoshida, Sota [1 ]
Sampei, Masaki [1 ]
Todoroki, Naoto [1 ,2 ]
Hisamura, Eri [3 ]
Nakao, Kohei [3 ]
Albrecht, Ken [2 ,3 ]
Wadayama, Toshimasa [1 ]
机构
[1] Tohoku Univ, Grad Sch Environm Studies, 6-2-2 Aramakiaza Aoba Aoba Ku, Sendai 9808579, Japan
[2] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[3] Kyushu Univ, Inst Mat Chem & Engn, 6-1 Kasuga Koen, Kasuga, Fukuoka 8168580, Japan
关键词
ELECTROCHEMICAL REDUCTION; CO2; ELECTRODES;
D O I
10.1039/d3cc00350g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Four types of carbazole dendrimers were applied as modification molecules of Au surfaces to improve carbon dioxide electroreduction. The reduction properties depended on the molecular structures: the highest activity and selectivity to CO was achieved by 9-phenylcarbazole, probably caused by the charge transfer from the molecule to Au.
引用
收藏
页码:3459 / 3462
页数:4
相关论文
共 28 条
[1]   Carbazole Dendrimers as Solution-Processable Thermally Activated Delayed-Fluorescence Materials [J].
Albrecht, Ken ;
Matsuoka, Kenichi ;
Fujita, Katsuhiko ;
Yamamoto, Kimihisa .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (19) :5677-5682
[2]   Dendritic Structure Having a Potential Gradient: New Synthesis and Properties of Carbazole Dendrimers [J].
Albrecht, Ken ;
Yamamoto, Kimihisa .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (06) :2244-2251
[3]   Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine [J].
Astruc, Didier ;
Boisselier, Elodie ;
Ornelas, Catia .
CHEMICAL REVIEWS, 2010, 110 (04) :1857-1959
[4]   Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles [J].
Ayiania, Michael ;
Smith, Matthew ;
Hensley, Alyssa J. R. ;
Scudiero, Louis ;
McEwen, Jean-Sabin ;
Garcia-Perez, Manuel .
CARBON, 2020, 162 :528-544
[5]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[6]   Tuning Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO2 Reduction [J].
Cao, Zhi ;
Zacate, Samson B. ;
Sun, Xiaodong ;
Liu, Jinjia ;
Hale, Elizabeth M. ;
Carson, William P. ;
Tyndall, Sam B. ;
Xu, Jun ;
Liu, Xingwu ;
Liu, Xingchen ;
Song, Chang ;
Luo, Jheng-hua ;
Cheng, Mu-Jeng ;
Wen, Xiaodong ;
Liu, Wei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (39) :12675-12679
[7]   Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm [J].
Higgins, Drew ;
Hahn, Christopher ;
Xiang, Chengxiang ;
Jaramillo, Thomas F. ;
Weber, Adam Z. .
ACS ENERGY LETTERS, 2019, 4 (01) :317-324
[8]   ELECTROCATALYTIC PROCESS OF CO SELECTIVITY IN ELECTROCHEMICAL REDUCTION OF CO2 AT METAL-ELECTRODES IN AQUEOUS-MEDIA [J].
HORI, Y ;
WAKEBE, H ;
TSUKAMOTO, T ;
KOGA, O .
ELECTROCHIMICA ACTA, 1994, 39 (11-12) :1833-1839
[9]   Cu-Based Organic-Inorganic Composite Materials for Electrochemical CO2 Reduction [J].
Hou, Man ;
Shi, Yong Xia ;
Li, Jun Jun ;
Gao, Zengqiang ;
Zhang, Zhicheng .
CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (18)
[10]   Activity switching of Sn and In species in Heusler alloys for electrochemical CO2 reduction [J].
Iwase, Kazuyuki ;
Kojima, Takayuki ;
Todoroki, Naoto ;
Honma, Itaru .
CHEMICAL COMMUNICATIONS, 2022, 58 (31) :4865-4868