Salt-Induced Doping and Templating of Laser-Induced Graphene Supercapacitors

被引:25
作者
Hawes, Gillian F. [1 ,2 ]
Verma, Priyanka [1 ,2 ]
Uceda, Marianna [1 ,2 ]
Karimi, Gholamreza [3 ]
Noremberg, Bruno S. [1 ,2 ]
Pope, Michael A. [1 ,2 ]
机构
[1] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
laser-induced graphene; supercapacitor; renewable; salt templating; poly(furfuryl alcohol); energy storage; HYDROTHERMAL CARBONIZATION; FURFURYL ALCOHOL; CAPACITANCE; REDUCTION; ELECTRODE; DEVICES; CARBON; LAYER;
D O I
10.1021/acsami.2c17476
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The use of inexpensive and widely available CO2 lasers to selectively irradiate polymer films and form a graphene foam, termed laser-induced graphene (LIG), has incited significant research attention. The simple and rapid nature of the approach and the high conductivity and porosity of LIG have motivated its widespread application in electrochemical energy storage devices such as batteries and supercapacitors. However, nearly all high-performance LIG-based supercapacitors reported to date are prepared from costly, petroleum-based polyimide (Kapton, PI). Herein, we demonstrate that incorporating microparticles of inexpensive, non-toxic, and widely abundant sodium salts such as NaCl and Na2SO4 into poly(furfuryl alcohol) (PFA) resins enables the formation of high-performance LIG. The embedded particles aid in carbonization and act as a template for pore formation. While increasing both the carbon yield and surface area of the electrodes, the salt also dopes the LIG formed with S or Cl. The combination of these effects results in a two-to four-order-of-magnitude increase in device areal capacitance, from 8 mu F/cm2 for PFA/no salt at 5 mV/s to up to 80 mF/cm2 for some PFA/20% Na2SO4 samples at 0.05 mA/cm2, significantly higher than that of PI-based devices and most other LIG precursors.
引用
收藏
页码:10570 / 10584
页数:15
相关论文
共 69 条
  • [1] Preparation of different heteroatom doped graphene oxide based electrodes by electrochemical method and their supercapacitor applications
    Arvas, Melih Besir
    Gursu, Hurmus
    Gencten, Metin
    Sahin, Yucel
    [J]. JOURNAL OF ENERGY STORAGE, 2021, 35
  • [2] Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/nchem.686, 10.1038/NCHEM.686]
  • [3] Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment
    Cai, Jinguang
    Lv, Chao
    Watanabe, Akira
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (05) : 1671 - 1679
  • [4] Stable and durable laser-induced graphene patterns embedded in polymer substrates
    Cao, Lijun
    Zhu, Shuairu
    Pan, Baohai
    Dai, Xinyan
    Zhao, Weiwei
    Liu, Yuan
    Xie, Weiping
    Kuang, Yongbo
    Liu, Xiaoqing
    [J]. CARBON, 2020, 163 : 85 - 94
  • [5] The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors
    Chen, Jiafeng
    Han, Yulei
    Kong, Xianghua
    Deng, Xinzhou
    Park, Hyo Ju
    Guo, Yali
    Jin, Song
    Qi, Zhikai
    Lee, Zonghoon
    Qiao, Zhenhua
    Ruoff, Rodney S.
    Ji, Hengxing
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (44) : 13822 - 13827
  • [6] Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials
    Chen, Xi'an
    Chen, Xiaohua
    Xu, Xin
    Yang, Zhi
    Liu, Zheng
    Zhang, Lijie
    Xu, Xiangju
    Chen, Ying
    Huang, Shaoming
    [J]. NANOSCALE, 2014, 6 (22) : 13740 - 13747
  • [7] MoS2-Decorated Laser-Induced Graphene for a Highly Sensitive, Hysteresis-free, and Reliable Piezoresistive Strain Sensor
    Chhetry, Ashok
    Sharifuzzaman, Md
    Yoon, Hyosang
    Sharma, Sudeep
    Xuan, Xing
    Park, Jae Yeong
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (25) : 22531 - 22542
  • [8] Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food
    Chyan, Yieu
    Ye, Ruquan
    Li, Yilun
    Singh, Swatantra Pratap
    Arnusch, Christopher J.
    Tour, James M.
    [J]. ACS NANO, 2018, 12 (03) : 2176 - 2183
  • [9] Ultrasensitive Electrochemical Methane Sensors Based on Solid Polymer Electrolyte-Infused Laser-Induced Graphene
    Dosi, Manan
    Lau, Irene
    Zhuang, Yichen
    Simakov, David S. A.
    Fowler, Michael W.
    Pope, Michael A.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (06) : 6166 - 6173
  • [10] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)