Constitutive model for ultra-high performance concrete (UHPC) considering the size effect under cyclic compressive loading

被引:16
作者
Zhang, Xiaochen [1 ]
Lu, Ya [1 ]
Wu, Xiangguo [2 ,3 ]
Wang, Puyan [4 ]
Li, Ran [5 ]
Liu, Yang [6 ]
Shen, Chao [7 ]
Zhang, Heming [7 ]
Zhang, Dong [2 ]
机构
[1] Harbin Inst Technol, Sch Civil Engn, Harbin 150001, Peoples R China
[2] Fuzhou Univ, Coll Civil Engn, Fujian Provincial Key Lab Multidisasters Prevent &, Fuzhou 350108, Peoples R China
[3] Harbin Inst Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disaste, Key Lab Struct Dynam Behav & Control, Minist Ind & Informat Technol,Minist Educ, Harbin 150090, Peoples R China
[4] Ningbo Elect Power Design Inst Co Ltd, Ningbo 315000, Peoples R China
[5] China Acad Bldg Res Co Ltd, Beijing 100013, Peoples R China
[6] CGN New Energy Holiding Co Ltd, Heilongjiang Branch, Harbin 150090, Peoples R China
[7] Shanghai Fengling Renewables Co Ltd, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultra-high performance concrete; Cyclic compressive loading; Constitutive model; Size effect; SHEAR-STRENGTH; BEHAVIOR;
D O I
10.1016/j.conbuildmat.2023.130499
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the size effect of the thickness of the specimen on the mechanical properties of UHPC was investigated through compression tests under cyclic loading. UHPC prisms with different thicknesses from 20 mm to 100 mm were tested under unloading/reloading cycles and the stress-strain curves were recorded for this purpose. A constitutive model to predict the stress-strain response of UHPC accounting for the thickness was proposed. It was found that UHPC specimens with different thicknesses showed the same failure mode of di-agonal shear failure. The size effect of thickness was significant for the compressive strength but was negligible for the peak strain and elastic modulus. The damage of the unloading modulus and reloading modulus at zero stress only occurred when the unloading strain exceeded 0.8 times the peak strain. Furthermore, the proposed constitutive model could predict the stress-strain response for UHPC with different thicknesses under cyclic compressive loading with acceptable accuracy.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Compressive behavior of ultra-high performance concrete confined with FRP
    Lam, Lik
    Huang, Liang
    Xie, Jian-He
    Chen, Jian-Fei
    COMPOSITE STRUCTURES, 2021, 274
  • [32] Study on the compressive strength and mixing of ultra-high performance concrete
    Feng, Su Li
    Zhao, Peng
    ARCHITECTURE, BUILDING MATERIALS AND ENGINEERING MANAGEMENT, PTS 1-4, 2013, 357-360 : 825 - +
  • [33] Analysis of Compressive Strength Development of Ultra-high Performance Concrete
    HAN Fangyu
    LIU Jianzhong
    ZHANG Qianqian
    LIU Jiaping
    SHI Liang
    Journal of the Chinese Ceramic Society, 2016, 3 (03) : 145 - 152
  • [34] MECHANICAL PROPERTIES AND CONSTITUTIVE MODEL OF ULTRA-HIGH PERFORMANCE CONCRETE MATERIAL UNDER UNIAXIAL TENSION AND COMPRESSION CYCLES
    Zhao J.-Z.
    Xin G.-F.
    Tao M.-X.
    Cui W.-T.
    Gongcheng Lixue/Engineering Mechanics, 2024, 41 (04): : 81 - 93
  • [35] Effect of materials proportion on rheology and mechanical strength and microstructure of ultra-high performance concrete (UHPC)
    Sadrmomtazi, Ali
    Tajasosi, Sama
    Tahmouresi, Behzad
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 187 : 1103 - 1112
  • [36] Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC)
    Huang, Wei
    Kazemi-Kamyab, Hadi
    Sun, Wei
    Scrivener, Karen
    CEMENT & CONCRETE COMPOSITES, 2017, 77 : 86 - 101
  • [37] Effect of steel fiber on the compressive performance and microstructure of ultra-high performance concrete at elevated temperatures
    Gao, Danying
    Zhang, Wei
    Tang, Jiyu
    Zhu, Zhihao
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 435
  • [38] Size Effect of Compressive Strength and Shrinkage Characteristics of Ultra High Performance Concrete
    Shui L.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2019, 22 (04): : 632 - 637
  • [39] Theoretical bond model between rebar and ultra-high performance concrete considering the effect of coarse aggregate
    Liu, Yuming
    Huang, Yuan
    Han, Bing
    Xu, Zhenming
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 450
  • [40] Cyclic loading test for prefabricated ultra-high performance concrete columns with bellows grouting connection
    Fu, Jundong
    Wan, Shui
    Xiao, Jie
    Wang, Xiao
    Zhou, Peng
    Dekemele, Kevin
    STRUCTURAL CONCRETE, 2024, 25 (05) : 3361 - 3382