Prediction of Alzheimer's progression based on multimodal Deep-Learning-based fusion and visual Explainability of time-series data

被引:39
|
作者
Rahim, Nasir [1 ]
El-Sappagh, Shaker [1 ,2 ,3 ]
Ali, Sajid [4 ]
Muhammad, Khan [5 ]
Del Ser, Javier [6 ,7 ]
Abuhmed, Tamer [1 ]
机构
[1] Sungkyunkwan Univ, Coll Comp & Informat, Dept Comp Sci & Engn, Informat Lab InfoLab, Suwon 16419, South Korea
[2] Galala Univ, Fac Comp Sci & Engn, Suez 435611, Egypt
[3] Benha Univ, Fac Comp & Artificial Intelligence, Informat Syst Dept, Banha 13518, Egypt
[4] Sungkyunkwan Univ, Coll Informat & Commun Engn, Dept Elect & Comp Engn, Informat Lab InfoLab, Suwon 16419, South Korea
[5] Sungkyunkwan Univ, Coll Comp & Informat, Sch Convergence, Dept Appl Artificial Intelligence, Seoul 03063, South Korea
[6] TECNALIA, Basque Res & Technol Alliance BRTA, Derio 48160, Spain
[7] Univ Basque Country UPV EHU, Dept Commun Engn, Bilbao 48013, Spain
基金
新加坡国家研究基金会;
关键词
AD progression detection; 3D CNN; Multimodal information fusion; Time-series data analysis; Explainable AI; MILD COGNITIVE IMPAIRMENT; DISEASE PROGRESSION; NEURAL-NETWORKS; CLASSIFICATION; ATROPHY; DIAGNOSIS; MODEL; MRI; HIPPOCAMPAL; INFORMATION;
D O I
10.1016/j.inffus.2022.11.028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Alzheimer's disease (AD) is a neurological illness that causes cognitive impairment and has no known treatment. The premise for delivering timely therapy is the early diagnosis of AD before clinical symptoms appear. Mild cognitive impairment is an intermediate stage in which cognitively normal patients can be distinguished from those with AD. In this study, we propose a hybrid multimodal deep-learning framework consisting of a 3D convolutional neural network (3D CNN) followed by a bidirectional recurrent neural network (BRNN). The proposed 3D CNN captures intra-slice features from each 3D magnetic resonance imaging (MRI) volume, whereas the BRNN module identifies the inter-sequence patterns that lead to AD. This study is conducted based on longitudinal 3D MRI volumes collected over a six-months time span. We further investigate the effect of fusing MRI with cross-sectional biomarkers, such as patients' demographic and cognitive scores from their baseline visit. In addition, we present a novel explainability approach that helps domain experts and practitioners to understand the end output of the proposed multimodal. Extensive experiments reveal that the accuracy, preci-sion, recall, and area under the receiver operating characteristic curve of the proposed framework are 96%, 99%, 92%, and 96%, respectively. These results are based on the fusion of MRI and demographic features and indicate that the proposed framework becomes more stable when exposed to a more complete set of longitudinal data. Moreover, the explainability module provides extra support for the progression claim by more accurately identifying the brain regions that domain experts commonly report during diagnoses.
引用
收藏
页码:363 / 388
页数:26
相关论文
共 50 条
  • [31] A deep learning approach using graph convolutional networks for slope deformation prediction based on time-series displacement data
    Zhengjing Ma
    Gang Mei
    Edoardo Prezioso
    Zhongjian Zhang
    Nengxiong Xu
    Neural Computing and Applications, 2021, 33 : 14441 - 14457
  • [32] Financial Time Series Prediction Based on Deep Learning
    Hongju Yan
    Hongbing Ouyang
    Wireless Personal Communications, 2018, 102 : 683 - 700
  • [33] A time series prediction method based on deep learning
    Lu T.-Z.
    Qian X.-C.
    He S.
    Tan Z.-N.
    Liu F.
    Liu, Fei (feiliu@scut.edu.cn), 1600, Northeast University (36): : 645 - 652
  • [34] MOOC Dropout Prediction Based on Multidimensional Time-Series Data
    Shou, Zhaoyu
    Chen, Pan
    Wen, Hui
    Liu, Jinghua
    Zhang, Huibing
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [35] An innovative deep architecture for aircraft hard landing prediction based on time-series sensor data
    Tong, Chao
    Yin, Xiang
    Li, Jun
    Zhu, Tongyu
    Lv, Renli
    Sun, Liang
    Rodrigues, Joel J. P. C.
    APPLIED SOFT COMPUTING, 2018, 73 : 344 - 349
  • [36] Neural additive time-series models: Explainable deep learning for multivariate time-series prediction
    Jo, Wonkeun
    Kim, Dongil
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 228
  • [37] Deep-learning-based prediction of late age-related macular degeneration progression
    Yan, Qi
    Weeks, Daniel E.
    Xin, Hongyi
    Swaroop, Anand
    Chew, Emily Y.
    Huang, Heng
    Ding, Ying
    Chen, Wei
    NATURE MACHINE INTELLIGENCE, 2020, 2 (02) : 141 - +
  • [38] Deep-learning-based prediction of late age-related macular degeneration progression
    Qi Yan
    Daniel E. Weeks
    Hongyi Xin
    Anand Swaroop
    Emily Y. Chew
    Heng Huang
    Ying Ding
    Wei Chen
    Nature Machine Intelligence, 2020, 2 : 141 - 150
  • [39] Time-Series InSAR with Deep-Learning-Based Topography-Dependent Atmospheric Delay Correction for Potential Landslide Detection
    Zhou, Hao
    Dai, Keren
    Tang, Xiaochuan
    Xiang, Jianming
    Li, Rongpeng
    Wu, Mingtang
    Peng, Yangrui
    Li, Zhenhong
    REMOTE SENSING, 2023, 15 (22)
  • [40] A Time Series Deep-Learning-Based Abnormality Detection Model in Power Consumption
    Li, Jingxiang
    Lai, Hao
    Shi, Yanhui
    Wang, Jinhai
    Journal of Network Intelligence, 2024, 9 (01): : 492 - 505