Prediction of Alzheimer's progression based on multimodal Deep-Learning-based fusion and visual Explainability of time-series data

被引:39
|
作者
Rahim, Nasir [1 ]
El-Sappagh, Shaker [1 ,2 ,3 ]
Ali, Sajid [4 ]
Muhammad, Khan [5 ]
Del Ser, Javier [6 ,7 ]
Abuhmed, Tamer [1 ]
机构
[1] Sungkyunkwan Univ, Coll Comp & Informat, Dept Comp Sci & Engn, Informat Lab InfoLab, Suwon 16419, South Korea
[2] Galala Univ, Fac Comp Sci & Engn, Suez 435611, Egypt
[3] Benha Univ, Fac Comp & Artificial Intelligence, Informat Syst Dept, Banha 13518, Egypt
[4] Sungkyunkwan Univ, Coll Informat & Commun Engn, Dept Elect & Comp Engn, Informat Lab InfoLab, Suwon 16419, South Korea
[5] Sungkyunkwan Univ, Coll Comp & Informat, Sch Convergence, Dept Appl Artificial Intelligence, Seoul 03063, South Korea
[6] TECNALIA, Basque Res & Technol Alliance BRTA, Derio 48160, Spain
[7] Univ Basque Country UPV EHU, Dept Commun Engn, Bilbao 48013, Spain
基金
新加坡国家研究基金会;
关键词
AD progression detection; 3D CNN; Multimodal information fusion; Time-series data analysis; Explainable AI; MILD COGNITIVE IMPAIRMENT; DISEASE PROGRESSION; NEURAL-NETWORKS; CLASSIFICATION; ATROPHY; DIAGNOSIS; MODEL; MRI; HIPPOCAMPAL; INFORMATION;
D O I
10.1016/j.inffus.2022.11.028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Alzheimer's disease (AD) is a neurological illness that causes cognitive impairment and has no known treatment. The premise for delivering timely therapy is the early diagnosis of AD before clinical symptoms appear. Mild cognitive impairment is an intermediate stage in which cognitively normal patients can be distinguished from those with AD. In this study, we propose a hybrid multimodal deep-learning framework consisting of a 3D convolutional neural network (3D CNN) followed by a bidirectional recurrent neural network (BRNN). The proposed 3D CNN captures intra-slice features from each 3D magnetic resonance imaging (MRI) volume, whereas the BRNN module identifies the inter-sequence patterns that lead to AD. This study is conducted based on longitudinal 3D MRI volumes collected over a six-months time span. We further investigate the effect of fusing MRI with cross-sectional biomarkers, such as patients' demographic and cognitive scores from their baseline visit. In addition, we present a novel explainability approach that helps domain experts and practitioners to understand the end output of the proposed multimodal. Extensive experiments reveal that the accuracy, preci-sion, recall, and area under the receiver operating characteristic curve of the proposed framework are 96%, 99%, 92%, and 96%, respectively. These results are based on the fusion of MRI and demographic features and indicate that the proposed framework becomes more stable when exposed to a more complete set of longitudinal data. Moreover, the explainability module provides extra support for the progression claim by more accurately identifying the brain regions that domain experts commonly report during diagnoses.
引用
收藏
页码:363 / 388
页数:26
相关论文
共 50 条
  • [1] Time-series visual explainability for Alzheimer's disease progression detection for smart healthcare
    Rahim, Nasir
    Abuhmed, Tamer
    Mirjalili, Seyedali
    El-Sappagh, Shaker
    Muhammad, Khan
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 82 : 484 - 502
  • [2] Multimodal multitask deep learning model for Alzheimer's disease progression detection based on time series data
    El-Sappagh, Shaker
    Abuhmed, Tamer
    Islam, S. M. Riazul
    Kwak, Kyung Sup
    NEUROCOMPUTING, 2020, 412 : 197 - 215
  • [3] Data fusion based on Searchlight analysis for the prediction of Alzheimer's disease
    Arco, Juan E.
    Ramirez, Javier
    Gorriz, Juan M.
    Ruz, Maria
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [4] Genetic algorithm-based hybrid deep learning model for explainable Alzheimer's disease prediction using temporal multimodal cognitive data
    Saleh, Hager
    ElRashidy, Nora
    Abd Elaziz, Mohamed
    Aseeri, Ahmad O.
    El-Sappagh, Shaker
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [5] Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson?s disease
    Junaid, Muhammad
    Ali, Sajid
    Eid, Fatma
    El-Sappagh, Shaker
    Abuhmed, Tamer
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 234
  • [6] A Deep-Learning-Based Multimodal Data Fusion Framework for Urban Region Function Recognition
    Yu, Mingyang
    Xu, Haiqing
    Zhou, Fangliang
    Xu, Shuai
    Yin, Hongling
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (12)
  • [7] Explainable Deep-Learning-Based Diagnosis of Alzheimer’s Disease Using Multimodal Input Fusion of PET and MRI Images
    Modupe Odusami
    Rytis Maskeliūnas
    Robertas Damaševičius
    Sanjay Misra
    Journal of Medical and Biological Engineering, 2023, 43 : 291 - 302
  • [8] Explainable Deep-Learning-Based Diagnosis of Alzheimer's Disease Using Multimodal Input Fusion of PET and MRI Images
    Odusami, Modupe
    Maskeliunas, Rytis
    Damasevicius, Robertas
    Misra, Sanjay
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2023, 43 (03) : 291 - 302
  • [9] The memory cycle of time-series public opinion data: Validation based on deep learning prediction
    Liu, Qing
    Liu, Yanfeng
    Son, Hosung
    INFORMATION PROCESSING & MANAGEMENT, 2025, 62 (04)
  • [10] Computer aided progression detection model based on optimized deep LSTM ensemble model and the fusion of multivariate time series data
    Saleh, Hager
    Amer, Eslam
    Abuhmed, Tamer
    Ali, Amjad
    Al-Fuqaha, Ala
    El-Sappagh, Shaker
    SCIENTIFIC REPORTS, 2023, 13 (01)