A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations

被引:11
作者
Baraldi, Robert J. J. [1 ]
Kouri, Drew P. P. [1 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87125 USA
关键词
Nonconvex optimization; Nonsmooth optimization; Nonlinear programming; Trust regions; Large-scale optimization; Newton's method; PDE-CONSTRAINED OPTIMIZATION; GLOBAL CONVERGENCE; NONCONVEX MINIMIZATION; ALGORITHMS; SUM; COMPLEXITY; SHRINKAGE; SPARSITY;
D O I
10.1007/s10107-022-01915-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Many applications require minimizing the sum of smooth and nonsmooth functions. For example, basis pursuit denoising problems in data science require minimizing a measure of data misfit plus an l(1)-regularizer. Similar problems arise in the optimal control of partial differential equations (PDEs) when sparsity of the control is desired. We develop a novel trust-region method to minimize the sum of a smooth nonconvex function and a nonsmooth convex function. Our method is unique in that it permits and systematically controls the use of inexact objective function and derivative evaluations. When using a quadratic Taylor model for the trust-region subproblem, our algorithm is an inexact, matrix-free proximal Newton-type method that permits indefinite Hessians. We prove global convergence of our method in Hilbert space and demonstrate its efficacy on three examples from data science and PDE-constrained optimization.
引用
收藏
页码:559 / 598
页数:40
相关论文
共 76 条
[1]  
[Anonymous], 2017, ROL RAPID OPTIMIZATI
[2]  
Aravkin A.Y., 2021, SIAM J OPTIMIZ, DOI [10.13140/RG.2.2.18509.15845, DOI 10.13140/RG.2.2.18509.15845]
[3]  
Attouch H., 1984, Variational Convergences for Functions and Operators
[4]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[5]  
Beck A, 2017, MOS-SIAM SER OPTIMIZ, P1
[6]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[7]  
Bendsoe M. P., 2013, Topology optimization: theory, methods, and applications
[8]  
Bertsekas D. P., 1999, Nonlinear Programming
[9]   Spectral Projected Gradient Methods: Review and Perspectives [J].
Birgin, Ernesto G. ;
Martinez, Jose Mario ;
Raydan, Marcos .
JOURNAL OF STATISTICAL SOFTWARE, 2014, 60 (03) :1-21
[10]   LOCAL AND GLOBAL ANALYSIS OF MULTIPLIER METHODS FOR CONSTRAINED OPTIMIZATION IN BANACH SPACES [J].
Boergens, Eike ;
Kanzow, Christian ;
Steck, Daniel .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (06) :3694-3722