Stability of inverse scattering problem for the damped biharmonic plate equation

被引:0
作者
Liu, Yang
Zu, Jian [1 ,2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Cauchy data; complex geometric optics solution; damped biharmonic plate equation; stability; INCREASING STABILITY; 1ST-ORDER PERTURBATION; UNIQUENESS; OPERATOR; ATTENUATION;
D O I
10.1002/mma.8867
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the stability of the inverse scattering problem for the damped biharmonic plate equation in a bounded domain with the Cauchy data. A sharp estimate for the mass density is established using a priori information concerning Sobolev norms and a priori information about the support of the inhomogeneity. Our results improve previous estimates and explicitly depend on the damping coefficient. The proof mainly relies on the complex geometric optics solution method and the Fourier analysis.
引用
收藏
页码:5794 / 5809
页数:16
相关论文
共 29 条
[1]  
Agranovich Mikhail S, 2015, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains
[2]   Determining the first order perturbation of a polyharmonic operator on admissible manifolds [J].
Assylbekov, Yernat M. ;
Yang, Yang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (01) :590-614
[3]  
Bai Z., 2020, CALC VAR PARTIAL DIF, V61, P170
[4]   UNIQUENESS FOR INVERSE ELASTIC MEDIUM PROBLEMS [J].
Barcelo, J. A. ;
Folch-Gabayet, M. ;
Perez-Esteva, S. ;
Ruiz, A. ;
Vilela, M. C. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) :3939-3962
[5]   Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves [J].
Beretta, Elena ;
de Hoop, Maarten V. ;
Francini, Elisa ;
Vessella, Sergio ;
Zhai, Jian .
INVERSE PROBLEMS, 2017, 33 (03)
[6]   THE UNIQUENESS OF A SOLUTION TO AN INVERSE SCATTERING PROBLEM FOR ELECTROMAGNETIC-WAVES [J].
COLTON, D ;
PAIVARINTA, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 119 (01) :59-70
[7]   On generalized Holmgren's principle to the Lame operator with applications to inverse elastic problems [J].
Diao, Huaian ;
Liu, Hongyu ;
Wang, Li .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (05)
[8]   INCREASING STABILITY IN ACOUSTIC AND ELASTIC INVERSE SOURCE PROBLEMS [J].
Entekhabi, Mozhgan ;
Isakov, Victor .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (05) :5232-5256
[9]  
Evans LC., 2010, Partial Differential Equations, V2
[10]  
Feldman J., 2019, CALDERON PROBLEM INT