Classification of all Galois subcovers of the Skabelund maximal curves

被引:2
作者
Beelen, Peter [1 ]
Landi, Leonardo [1 ]
Montanucci, Maria [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, Matematiklovet 303B,2800 Kgs, DK-2800 Lyngby, Denmark
关键词
Suzuki and Ree curves; Skabelund maximal curves; Genus spectrum of maximal curves; DELIGNE-LUSZTIG CURVE; FINITE-FIELDS; ALGEBRAIC-CURVES; QUOTIENT CURVES; SUBFIELDS; SUZUKI; GENERA; GENUS; SPECTRUM; NUMBER;
D O I
10.1016/j.jnt.2022.07.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2017 Skabelund constructed two new examples of maximal curves S similar to q and similar to Rq as covers of the Suzuki and Ree curves, respectively. The resulting Skabelund curves are analogous to the Giulietti-Korchmaros cover of the Hermitian curve. In this paper a complete characterization of all Galois subcovers of the Skabelund curves S similar to q and similar to Rq is given. Calculating the genera of the corresponding curves, we find new additions to the list of known genera of maximal curves over finite fields. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:46 / 72
页数:27
相关论文
共 46 条
[1]   On the genera of subfields of the Hermitian function field [J].
Abdón, M ;
Quoos, L .
FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (03) :271-284
[2]   A complete characterization of Galois subfields of the generalized Giulietti-Korchmaros function field [J].
Anbar, Nurdagul ;
Bassa, Alp ;
Beelen, Peter .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 :318-330
[3]  
[Anonymous], 2008, PRINCETON SERIES APP
[4]   Towards a characterization of subfields of the Deligne-Lusztig function fields [J].
Bassa, Alp ;
Ma, Liming ;
Xing, Chaoping ;
Yeo, Sze Ling .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) :1351-1371
[5]   Weierstrass semigroups on the Skabelund maximal curve [J].
Beelen, Peter ;
Landi, Leonardo ;
Montanucci, Maria .
FINITE FIELDS AND THEIR APPLICATIONS, 2021, 72
[6]   On subfields of the second generalization of the GK maximal function field [J].
Beelen, Peter ;
Montanucci, Maria .
FINITE FIELDS AND THEIR APPLICATIONS, 2020, 64
[7]   A new family of maximal curves [J].
Beelen, Peter ;
Montanucci, Maria .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 (03) :573-592
[8]   Number of rational places of subfields of the function field of the Deligne-Lusztig curve of Ree type [J].
Çakçak, E ;
Özbudak, F .
ACTA ARITHMETICA, 2005, 120 (01) :79-106
[9]   Subfields of the function field of the Deligne-Lusztig curve of Ree type [J].
Çakçak, E ;
Özbudak, F .
ACTA ARITHMETICA, 2004, 115 (02) :133-180
[10]   On curves covered by the Hermitian curve [J].
Cossidente, A ;
Korchmáros, G ;
Torres, F .
JOURNAL OF ALGEBRA, 1999, 216 (01) :56-76