Generalized fuzzy difference method for solving fuzzy initial value problem

被引:0
|
作者
Soroush, S. [1 ]
Allahviranloo, T. [1 ,2 ]
Azari, H. [3 ]
Rostamy-Malkhalifeh, M. [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran, Iran
[2] Istinye Univ, Res Ctr Performance & Prod Anal, Istanbul, Turkiye
[3] Shahid Beheshti Univ, Fac Math Sci, Dept Appl Math, Tehran, Iran
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 03期
关键词
Fuzzy differential equation; Generalized differentiability; Adams-Bashforth method; Fuzzy difference equations; CAUCHY-PROBLEM; EQUATIONS;
D O I
10.1007/s40314-024-02645-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are going to explain the fuzzy Adams-Bashforth methods for solving fuzzy differential equations focusing on the concept of g-differentiability. Considering the analysis of normal, convex, upper semicontinuous, compactly supported fuzzy sets in R n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>n$$\end{document} and also convergence of the methods, the general expression of solutions is obtained. Finally, we demonstrate the importance of our method with some illustrative examples. These examples are provided aiming to solve the fuzzy differential equations.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Singularly perturbed fuzzy initial value problems
    Dogan, Nurettin
    Bayeg, Selami
    Mert, Raziye
    Akin, Oemer
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 223
  • [22] Modeling the linear drag on falling balls via interactive fuzzy initial value problem
    Salgado, Silvio Antonio Bueno
    Rojas, Onofre
    de Souza, Sergio Martins
    Pires, Danilo Machado
    Ferreira, Leandro
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (01):
  • [23] Modeling the linear drag on falling balls via interactive fuzzy initial value problem
    Silvio Antonio Bueno Salgado
    Onofre Rojas
    Sérgio Martins de Souza
    Danilo Machado Pires
    Leandro Ferreira
    Computational and Applied Mathematics, 2022, 41
  • [24] Runge-Kutta method for solving fuzzy differential equations under generalized differentiability
    Kanagarajan, K.
    Suresh, R.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 1294 - 1305
  • [25] Generalized finite difference method for solving the bending problem of variable thickness thin plate
    Liu, Fan
    Song, Lina
    Jiang, Maosheng
    Fu, Guangming
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 139 : 69 - 76
  • [26] Solving fuzzy differential equations by Runge-Kutta method
    Ghanaie, Z. Akbarzadeh
    Moghadam, M. Mohseni
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (02): : 208 - 221
  • [27] Solving nonlinear fuzzy differential equations by using fuzzy variational iteration method
    T. Allahviranloo
    S. Abbasbandy
    Sh. S. Behzadi
    Soft Computing, 2014, 18 : 2191 - 2200
  • [28] Solving nonlinear fuzzy differential equations by using fuzzy variational iteration method
    Allahviranloo, T.
    Abbasbandy, S.
    Behzadi, Sh. S.
    SOFT COMPUTING, 2014, 18 (11) : 2191 - 2200
  • [29] Milstein method for solving fuzzy differential equation
    Ji, L. Y.
    You, C. L.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2021, 18 (03): : 129 - 141
  • [30] Solution of initial-value problem for linear third-order fuzzy differential equations
    Akram, Muhammad
    Muhammad, Ghulam
    Allahviranloo, Tofigh
    Pedrycz, Witold
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):