Insights into the DHQ-BN: mechanical, electronic, and optical properties

被引:4
作者
Lima, K. A. Lopes [1 ,2 ]
Mendonca, F. L. Lopes [3 ]
Giozza, W. F. [3 ]
de Sousa Junior, R. T. [3 ]
Ribeiro Junior, L. A. [1 ,2 ]
机构
[1] Univ Brasilia, Inst Phys, BR-70910900 Brasilia, Brazil
[2] Univ Brasilia, Inst Phys, Computat Mat Lab, LCCMat, BR-70910900 Brasilia, Brazil
[3] Univ Brasilia, Fac Technol, Dept Elect Engn, Brasilia, Brazil
关键词
HEXAGONAL BORON-NITRIDE; CARBON-BASED NANOMATERIALS; GRAPHENE;
D O I
10.1038/s41598-024-52347-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computational materials research is vital in improving our understanding of various class of materials and their properties, contributing valuable information that helps predict innovative structures and complement empirical investigations. In this context, DHQ-graphene recently emerged as a stable two-dimensional carbon allotrope composed of decagonal, hexagonal, and quadrilateral carbon rings. Here, we employ density functional theory calculations to investigate the mechanical, electronic, and optical features of its boron nitride counterpart (DHQ-BN). Our findings reveal an insulating band gap of 5.11 eV at the HSE06 level and good structural stability supported by phonon calculations and ab initio molecular dynamics simulations. Moreover, DHQ-BN exhibits strong ultraviolet (UV) activity, suggesting its potential as a highly efficient UV light absorber. Its mechanical properties, including Young's modulus (230 GPa) and Poisson's ratio (0.7), provide insight into its mechanical resilience and structural stability.
引用
收藏
页数:9
相关论文
共 57 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]   Smooth gap tuning strategy for cove-type graphene nanoribbons [J].
Araujo Cassiano, Tiago de Sousa ;
Monteiro, Fabio Ferreira ;
de Sousa, Leonardo Evaristo ;
Magela e Silva, Geraldo ;
de Oliveira Neto, Pedro Henrique .
RSC ADVANCES, 2020, 10 (45) :26937-26943
[3]  
Asha A.B., 2020, POLYM SCI NANOTECHNO, P343, DOI [DOI 10.1016/B978-0-12-816806-6.00015-7, 10.1016/B978-0-12-816806-6.00015-7, 10.1016/b978-0-12-816806-6.00015-7]
[4]   Hybrid Quantum-Classical Approach to Correlated Materials [J].
Bauer, Bela ;
Wecker, Dave ;
Millis, Andrew J. ;
Hastings, Matthew B. ;
Troyer, Matthias .
PHYSICAL REVIEW X, 2016, 6 (03)
[5]   All in the graphene family - A recommended nomenclature for two-dimensional carbon materials [J].
Bianco, Alberto ;
Cheng, Hui-Ming ;
Enoki, Toshiaki ;
Gogotsi, Yury ;
Hurt, Robert H. ;
Koratkar, Nikhil ;
Kyotani, Takashi ;
Monthioux, Marc ;
Park, Chong Rae ;
Tascon, Juan M. D. ;
Zhang, Jin .
CARBON, 2013, 65 :1-6
[6]   Computational materials design of crystalline solids [J].
Butler, Keith T. ;
Frost, Jarvist M. ;
Skelton, Jonathan M. ;
Svane, Katrine L. ;
Walsh, Aron .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (22) :6138-6146
[7]   Hexagonal boron nitride is an indirect bandgap semiconductor [J].
Cassabois, G. ;
Valvin, P. ;
Gil, B. .
NATURE PHOTONICS, 2016, 10 (04) :262-+
[8]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[9]   VOIGT-REUSS-HILL APPROXIMATION AND ELASTIC MODULI OF POLYCRYSTALLINE MGO CAF2 BETA-ZNS ZNSE AND CDTE [J].
CHUNG, DH ;
BUESSEM, WR .
JOURNAL OF APPLIED PHYSICS, 1967, 38 (06) :2535-&
[10]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570