A hybrid system based on ensemble learning to model residuals for time series

被引:15
作者
Santos Junior, Domingos S. de O. [1 ]
Neto, Paulo S. G. de Mattos [1 ]
de Oliveira, Joao F. L. [2 ]
Cavalcanti, George D. C. [1 ]
机构
[1] Univ Fed Pernambuco UFPE, Ctr Informat, Recife, PE, Brazil
[2] Univ Pernambuco UPE, Petrolina, PE, Brazil
关键词
Time series forecasting; Residual modeling; Hybrid systems; Ensemble learning; NETWORK; ARIMA;
D O I
10.1016/j.ins.2023.119614
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The time series forecasting literature has highlighted the accuracy of hybrid systems that combine statistical linear and Machine Learning (ML) models by modeling the residuals. These systems separately model linear and nonlinear patterns aiming to overcome the limitations of using only a single model. This system comprises three phases: linear modeling of the time series, forecasting the residuals using an ML model, and final forecasting through the combination of past phases. Modeling the residuals is challenging because the residuals may present heteroscedasticity, complex nonlinear patterns, and random fluctuations. Hence, specifying a single ML model is a complex task. This work proposes a hybrid system that combines a linear statistical model with an ensemble of ML models to forecast real-world time series. The proposed method employs an ensemble in the phase of modeling the residuals, aiming at: improving the generalization capacity of the system, reducing the risk of selecting an incorrect model, expanding the function space, and increasing the system's accuracy. Moreover, for each time series, a data-driven search is carried out for the parameters of the ensemble that will be the most suitable for that time series. The experimental results show that the proposal attains superior performance and is statistically better than the related systems in the literature.
引用
收藏
页数:15
相关论文
共 52 条
[1]  
Abadi M., 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
[2]   An error correction system for sea surface temperature prediction [J].
Araujo, Ricardo de A. ;
Neto, Paulo S. G. de Mattos ;
Nedjah, Nadia ;
Soares, Sergio C. B. .
NEURAL COMPUTING & APPLICATIONS, 2023, 35 (16) :11681-11699
[3]   A hybrid ARIMA-ANN method to forecast daily global solar radiation in three different cities in Morocco [J].
Belmahdi, Brahim ;
Louzazni, Mohamed ;
El Bouardi, Abdelmajid .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (11)
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   A survey on facial emotion recognition techniques: A state-of-the-art literature review [J].
Canal, Felipe Zago ;
Mueller, Tobias Rossi ;
Matias, Jhennifer Cristine ;
Scotton, Gustavo Gino ;
de Sa, Antonio Reis ;
Pozzebon, Eliane ;
Sobieranski, Antonio Carlos .
INFORMATION SCIENCES, 2022, 582 :593-617
[6]   Forecasting Indonesia Exports using a Hybrid Model ARIMA-LSTM [J].
Dave, Emmanuel ;
Leonardo, Albert ;
Jeanice, Marethia ;
Hanafiah, Novita .
5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 :480-487
[7]   Swarm Based Ensembles for Time Series Residual Forecasting [J].
de Holanda, Rafael Bergamo B. ;
de Oliveira, Joao F. L. .
2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, :595-602
[8]   Machine learning models for forecasting water demand for the Metropolitan Region of Salvador, Bahia [J].
de Jesus, Edmilson dos Santos ;
Gomes, Gecynalda Soares da Silva .
NEURAL COMPUTING & APPLICATIONS, 2023, 35 (27) :19669-19683
[9]   An adaptive hybrid system using deep learning for wind speed forecasting [J].
de Mattos Neto, Paulo S. G. ;
de Oliveira, Joao F. L. ;
Santos Junior, Domingos S. de O. ;
Siqueira, Hugo Valadares ;
Marinho, Manoel H. N. ;
Madeiro, Francisco .
INFORMATION SCIENCES, 2021, 581 :495-514
[10]   A Hybrid Nonlinear Combination System for Monthly Wind Speed Forecasting [J].
de Mattos Neto, Paulo S. G. ;
Lorenzato de Oliveira, Joao Fausto ;
de Oliveira Santos Junior, Domingos Savio ;
Siqueira, Hugo Valadares ;
Nobrega Marinho, Manoel Henrique ;
Madeiro, Francisco .
IEEE ACCESS, 2020, 8 :191365-191377