Using Plasma-Activated Water Generated by an Air Gliding Arc as a Nitrogen Source for Rice Seed Germination

被引:11
作者
Chuea-uan, Siraporn [1 ]
Boonyawan, Dheerawan [2 ]
Sawangrat, Choncharoen [3 ]
Thanapornpoonpong, Sa-nguansak [1 ]
机构
[1] Chiang Mai Univ, Fac Agr, Dept Plant & Soil Sci, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Fac Sci, Plasma & Beam Phys Res Facil, Chiang Mai 50200, Thailand
[3] Chiang Mai Univ, Fac Engn, Dept Ind Engn, Chiang Mai 50200, Thailand
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 01期
关键词
plasma-activated water (PAW); gliding arc (GA) plasma; nitrogen source; rice seed; germination; NONTHERMAL PLASMA; GROWTH;
D O I
10.3390/agronomy14010015
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
This research aimed to understand the use of air gliding arc (GA) plasma to generate plasma-activated water (PAW) for fixing nitrogen in water and the chemical properties of PAW on the germination of rice seeds. The N2, NO, and OH molecules in GA plasma led to NO3-, NO2-, and H2O2 formation in the PAW. The NO3-, NO2-, and H2O2 contents in PAW rapidly decreased after 5 days of storage. The experiment was arranged in a completely randomised design using GA plasma discharged above the surface of deionised (DI) water with different airflow rates (2, 3, 4, 5, and 6 L/min) compared to the control (DI water). The NO3- and NO2- contents increased, resulting in an increase in total nitrogen (N) and gibberellic acid (GA3) accumulation in rice seeds. The PAW at an airflow rate of 5 L/min was optimal for enhancing radicle emergence at 48 and 72 h, germination, germination index, shoot length, fresh weight, and dry weight of seedlings. Therefore, air GA plasma to generate PAW is an efficient method for producing nitrogen in a soluble form, which can support the germination processes and early growth of rice seedlings.
引用
收藏
页数:18
相关论文
共 59 条
[1]  
AKAZAWA T, 1991, GIBBERELLINS, P114
[2]   The Role of Interfacial Reactions in Determining Plasma-Liquid Chemistry [J].
Anderson, Carly E. ;
Cha, Nico R. ;
Lindsay, Alexander D. ;
Clark, Douglas S. ;
Graves, David B. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2016, 36 (06) :1393-1415
[3]  
AOAC International, 2006, Protein (crude) in animal feedCombustion method. AOAC Official Method 990.03
[4]  
Bhullar M., 2022, Emerging Food Processing Technologies, P31
[5]   Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling [J].
Bi, Yong-Mei ;
Kant, Surya ;
Clark, Joseph ;
Gidda, Satinder ;
Ming, Feng ;
Xu, Jianyao ;
Rochon, Amanda ;
Shelp, Barry J. ;
Hao, Lixin ;
Zhao, Rong ;
Mullen, Robert T. ;
Zhu, Tong ;
Rothstein, Steven J. .
PLANT CELL AND ENVIRONMENT, 2009, 32 (12) :1749-1760
[6]   Formation of H2 and H2O2 in a Water-Spray Gliding Arc Nonthermal Plasma Reactor [J].
Burlica, R. ;
Shih, K-Y ;
Locke, B. R. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (14) :6342-6349
[7]   Population structure of Fusarium fujikuroi from California rice and water grass [J].
Carter, L. L. A. ;
Leslie, J. F. ;
Webster, R. K. .
PHYTOPATHOLOGY, 2008, 98 (09) :992-998
[8]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[9]   A review of the existing and alternative methods for greener nitrogen fixation [J].
Cherkasov, N. ;
Ibhadon, A. O. ;
Fitzpatrick, P. .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2015, 90 :24-33
[10]  
Crawford Nigel M, 2002, Arabidopsis Book, V1, pe0011, DOI 10.1199/tab.0011