Iterative Hille-type oscillation criteria of half-linear advanced dynamic equations of second order

被引:4
|
作者
Hassan, Taher S. [1 ,2 ,3 ]
Cesarano, Clemente [3 ]
Mesmouli, Mouataz Billah [1 ]
Zaidi, Hasan Nihal [1 ]
Odinaev, Ismoil [4 ]
机构
[1] Univ Hail, Coll Sci, Dept Math, Hail 2440, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura, Egypt
[3] Int Telemat Univ Uninettuno, Sect Math, Rome, Italy
[4] Ural Fed Univ, Ural Power Engn Inst, Dept Automated Elect Syst, Ekaterinburg, Russia
关键词
advanced dynamic equations; half-linear; Hille-type; oscillation; second order; DIFFERENTIAL-EQUATIONS; TIME SCALES; DELAY; BOUNDEDNESS; THEOREMS; BEHAVIOR;
D O I
10.1002/mma.9883
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish iterative Hille-type criteria for advanced functional half-linear dynamic equations of the second order. These results extend and improve recent criteria established by multiple authors for the same equation and encompass classical criteria. We provide an example to demonstrate the significance of the results obtained.
引用
收藏
页码:5651 / 5663
页数:13
相关论文
共 50 条
  • [31] Nonoscillation and oscillation of second order half-linear difference equations
    Sun, Yuan Gong
    Meng, Fan Wei
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) : 121 - 127
  • [32] Oscillation of certain second order half-linear differential equations
    Agarwal, RP
    Grace, SR
    DIFFERENTIAL EQUATIONS AND APPLICATIONS, VOL 2, 2002, : 11 - 18
  • [33] OSCILLATION CRITERIA FOR SECOND-ORDER HALF-LINEAR DELAY DIFFERENTIAL EQUATIONS WITH MIXED NEUTRAL TERMS
    Grace, Said R.
    Graef, John R.
    Jadlovska, Irena
    MATHEMATICA SLOVACA, 2019, 69 (05) : 1117 - 1126
  • [34] A sharp oscillation criterion for second-order half-linear advanced differential equations
    G. E. Chatzarakis
    S. R. Grace
    I. Jadlovská
    Acta Mathematica Hungarica, 2021, 163 : 552 - 562
  • [35] INTERVAL CRITERIA FOR OSCILLATION OF SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING
    Xu, Zhiting
    Peng, Shiguo
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (01): : 49 - 56
  • [36] Interval criteria for oscillation of second-order half-linear differential equations
    Wang, QR
    Yang, QG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) : 224 - 236
  • [37] A sharp oscillation criterion for second-order half-linear advanced differential equations
    Chatzarakis, G. E.
    Grace, S. R.
    Jadlovska, I
    ACTA MATHEMATICA HUNGARICA, 2021, 163 (02) : 552 - 562
  • [38] OSCILLATION RESULTS FOR SECOND ORDER HALF-LINEAR FUNCTIONAL DYNAMIC EQUATIONS WITH UNBOUNDED NEUTRAL COEFFICIENTS ON TIME SCALES
    Ozdemir, Orhan
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 668 - 683
  • [39] Bounded Oscillation of Second-Order Half-Linear Neutral Delay Dynamic Equations
    Chen, Da-Xue
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (03) : 807 - 823
  • [40] Oscillation criteria for third-order functional half-linear dynamic equations
    Taher S Hassan
    Ravi P Agarwal
    Wael W Mohammed
    Advances in Difference Equations, 2017