Serum CRP interacts with SPARC and regulate immune response in severe cases of COVID-19 infection

被引:3
作者
Liu, Chengyang [1 ]
Zheng, Chenyang [2 ]
Shen, Xipeng [2 ]
Liang, Ling [3 ]
Li, Qiuyu [4 ]
机构
[1] Peking Univ, Peking Tsinghua Ctr Life Sci, Inst Syst Biomed, Sch Basic Med Sci,Hlth Sci Ctr,Dept Pathol,Beijing, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Biol Sci & Med Engn, Beijing, Peoples R China
[3] Peking Univ, Hlth Sci Ctr, Sch Basic Med Sci, Dept Biophys, Beijing, Peoples R China
[4] Peking Univ Third Hosp, Dept Resp & Crit Care Med, Beijing, Peoples R China
关键词
C-reactive protein; COVID-19; secreted protein acidic and rich in cysteine; cytokine response storm; megakaryocyte; MODULE;
D O I
10.3389/fimmu.2023.1259381
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Serum C-reactive protein (CRP) has been found elevated during COVID-19 infection, and associated with systematic inflammation as well as a poor clinical outcome. However, how did CRP participated in the COVID-19 pathogenesis remains poorly understood. Here, we report that serum C-reactive protein (CRP) levels are correlated with megakaryocyte marker genes and could regulate immune response through interaction with megakaryocytes. Molecular dynamics simulation through ColabFold showed a reliable interaction between monomeric form of CRP (mCRP) and the secreted protein acidic and rich in cysteine (SPARC). The interaction does not affect the physiological activities of SPARC while would be disturbed by pentamerization of CRP. Interplay between SPARC and mCRP results in a more intense immune response which may led to poor prognosis. This study highlights the complex interplay between inflammatory markers, megakaryocytes, and immune regulation in COVID-19 and sheds light on potential therapeutic targets.
引用
收藏
页数:9
相关论文
共 30 条
[21]   Large-Scale Multi-omic Analysis of COVID-19 Severity [J].
Overmyer, Katherine A. ;
Shishkova, Evgenia ;
Miller, Ian J. ;
Balnis, Joseph ;
Bernstein, Matthew N. ;
Peters-Clarke, Trenton M. ;
Meyer, Jesse G. ;
Quan, Qiuwen ;
Muehlbauer, Laura K. ;
Trujillo, Edna A. ;
He, Yuchen ;
Chopra, Amit ;
Chieng, Hau C. ;
Tiwari, Anupama ;
Judson, Marc A. ;
Paulson, Brett ;
Brademan, Dain R. ;
Zhu, Yunyun ;
Serrano, Lia R. ;
Linke, Vanessa ;
Drake, Lisa A. ;
Adam, Alejandro P. ;
Schwartz, Bradford S. ;
Singer, Harold A. ;
Swanson, Scott ;
Mosher, Deane F. ;
Stewart, Ron ;
Coon, Joshua J. ;
Jaitovich, Ariel .
CELL SYSTEMS, 2021, 12 (01) :23-+
[22]   COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas [J].
Ren, Xianwen ;
Wen, Wen ;
Fan, Xiaoying ;
Hou, Wenhong ;
Su, Bin ;
Cai, Pengfei ;
Li, Jiesheng ;
Liu, Yang ;
Tang, Fei ;
Zhang, Fan ;
Yang, Yu ;
He, Jiangping ;
Ma, Wenji ;
He, Jingjing ;
Wang, Pingping ;
Cao, Qiqi ;
Chen, Fangjin ;
Chen, Yuqing ;
Cheng, Xuelian ;
Deng, Guohong ;
Deng, Xilong ;
Ding, Wenyu ;
Feng, Yingmei ;
Gan, Rui ;
Guo, Chuang ;
Guo, Weiqiang ;
He, Shuai ;
Jiang, Chen ;
Liang, Juanran ;
Li, Yi-min ;
Lin, Jun ;
Ling, Yun ;
Liu, Haofei ;
Liu, Jianwei ;
Liu, Nianping ;
Liu, Shu-Qiang ;
Luo, Meng ;
Ma, Qiang ;
Song, Qibing ;
Sun, Wujianan ;
Wang, GaoXiang ;
Wang, Feng ;
Wang, Ying ;
Wen, Xiaofeng ;
Wu, Qian ;
Xu, Gang ;
Xie, Xiaowei ;
Xiong, Xinxin ;
Xing, Xudong ;
Xu, Hao .
CELL, 2021, 184 (07) :1895-+
[23]   The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging [J].
Ryu, Seungjin ;
Sidorov, Sviatoslav ;
Ravussin, Eric ;
Artyomov, Maxim ;
Iwasaki, Akiko ;
Wang, Andrew ;
Dixit, Vishwa Deep .
IMMUNITY, 2022, 55 (09) :1609-+
[24]   Cytoscape: A software environment for integrated models of biomolecular interaction networks [J].
Shannon, P ;
Markiel, A ;
Ozier, O ;
Baliga, NS ;
Wang, JT ;
Ramage, D ;
Amin, N ;
Schwikowski, B ;
Ideker, T .
GENOME RESEARCH, 2003, 13 (11) :2498-2504
[25]   Role of C-Reactive Protein at Sites of Inflammation and Infection [J].
Sproston, Nicola R. ;
Ashworth, Jason J. .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[26]  
Szklarczyk D, 2019, NUCLEIC ACIDS RES, V47, pD607, DOI [10.1093/nar/gky1131, 10.1093/nar/gkac1000]
[27]   DNA-Binding and -Bending Activities of SAP30L and SAP30 Are Mediated by a Zinc-Dependent Module and Monophosphoinositides [J].
Viiri, Keijo M. ;
Janis, Janne ;
Siggers, Trevor ;
Heinonen, Taisto Y. K. ;
Valjakka, Jarkko ;
Bulyk, Martha L. ;
Maki, Markku ;
Lohi, Olli .
MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (02) :342-356
[28]   Decoding Human Megakaryocyte Development [J].
Wang, Hongtao ;
He, Jian ;
Xu, Changlu ;
Chen, Xiaoyuan ;
Yang, Hua ;
Shi, Shujuan ;
Liu, Cuicui ;
Zeng, Yang ;
Wu, Dan ;
Bai, Zhijie ;
Wang, Mengge ;
Wen, Yuqi ;
Su, Pei ;
Xia, Meijuan ;
Huang, Baiming ;
Ma, Chunyu ;
Bian, Lihong ;
Lan, Yu ;
Cheng, Tao ;
Shi, Lihong ;
Liu, Bing ;
Zhou, Jiaxi .
CELL STEM CELL, 2021, 28 (03) :535-+
[29]   Integrated Bioinformatics Analysis for the Screening of Associated Pathways and Therapeutic Drugs in Coronavirus Disease 2019 [J].
Wang, Ting ;
Zhao, Minghui ;
Ye, Pingping ;
Wang, Qian ;
Zhao, Yongshan .
ARCHIVES OF MEDICAL RESEARCH, 2021, 52 (03) :304-310
[30]   Machine learning algorithms utilizing blood parameters enable early detection of immunethrombotic dysregulation in COVID-19 [J].
Zhou, Zhaoming ;
Zhou, Xiang ;
Cheng, Liming ;
Wen, Lei ;
An, Taixue ;
Gao, Heng ;
Deng, Hongrong ;
Yan, Qi ;
Zhang, Xinlu ;
Li, Youjiang ;
Liao, Yixing ;
Chen, Xin-zu ;
Nie, Bin ;
Cheng, Jie ;
Deng, Guanhua ;
Wang, Shengqiang ;
Li, Juan ;
Yin, Hanqi ;
Zhang, Mengxian ;
Cai, Linbo ;
Zheng, Lei ;
Li, Minglun ;
Jones, Bleddyn ;
Chen, Longhua ;
Abdollahi, Amir ;
Zhou, Meijuan ;
Zhou, Ping-Kun ;
Zhou, Cheng .
CLINICAL AND TRANSLATIONAL MEDICINE, 2021, 11 (09)