Stochastic Optimization for Nonconvex Problem With Inexact Hessian Matrix, Gradient, and Function
被引:2
|
作者:
Liu, Liu
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R ChinaBeihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
Liu, Liu
[1
,2
]
Liu, Xuanqing
论文数: 0引用数: 0
h-index: 0
机构:
Amazon Web Serv, Seattle, WA 98108 USABeihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
Liu, Xuanqing
[3
]
Hsieh, Cho-Jui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USABeihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
Hsieh, Cho-Jui
[4
]
Tao, Dacheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Sch Comp Sci, Sydney AI Ctr, Fac Engn, Sydney, NSW 2008, AustraliaBeihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
Tao, Dacheng
[5
]
机构:
[1] Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
[2] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Amazon Web Serv, Seattle, WA 98108 USA
[4] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[5] Univ Sydney, Sch Comp Sci, Sydney AI Ctr, Fac Engn, Sydney, NSW 2008, Australia
Trust region (TR) and adaptive regularization using cubics (ARC) have proven to have some very appealing theoretical properties for nonconvex optimization by concurrently computing function value, gradient, and Hessian matrix to obtain the next search direction and the adjusted parameters. Although stochastic approximations help largely reduce the computational cost, it is challenging to theoretically guarantee the convergence rate. In this article, we explore a family of stochastic TR (STR) and stochastic ARC (SARC) methods that can simultaneously provide inexact computations of the Hessian matrix, gradient, and function values. Our algorithms require much fewer propagations overhead per iteration than TR and ARC. We prove that the iteration complexity to achieve epsilon-approximate second-order optimality is of the same order as the exact computations demonstrated in previous studies. In addition, the mild conditions on inexactness can be met by leveraging a random sampling technology in the finite-sum minimization problem. Numerical experiments with a nonconvex problem support these findings and demonstrate that, with the same or a similar number of iterations, our algorithms require less computational overhead per iteration than current secondorder methods.
机构:
Ho Chi Minh City Univ Educ, Dept Math, Grp Anal & Appl Math, Ho Chi Minh City, VietnamHo Chi Minh City Univ Educ, Dept Math, Grp Anal & Appl Math, Ho Chi Minh City, Vietnam
Khanh, Pham Duy
Mordukhovich, Boris S.
论文数: 0引用数: 0
h-index: 0
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USAHo Chi Minh City Univ Educ, Dept Math, Grp Anal & Appl Math, Ho Chi Minh City, Vietnam
Mordukhovich, Boris S.
Tran, Dat Ba
论文数: 0引用数: 0
h-index: 0
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USAHo Chi Minh City Univ Educ, Dept Math, Grp Anal & Appl Math, Ho Chi Minh City, Vietnam
机构:
Univ Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
Hu, Jia
Han, Congying
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, 80 Zhongguancun East Rd, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
Han, Congying
Guo, Tiande
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, 80 Zhongguancun East Rd, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
Guo, Tiande
Zhao, Tong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, 80 Zhongguancun East Rd, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China