Transcriptome profiling of type VI secretion system core gene tssM mutant of Xanthomonas perforans highlights regulators controlling diverse functions ranging from virulence to metabolism

被引:0
|
作者
Ramamoorthy, Sivakumar [1 ]
Pena, Michelle [1 ]
Ghosh, Palash [1 ]
Liao, Ying-Yu [2 ]
Paret, Mathews [2 ]
Jones, Jeffrey B. [2 ]
Potnis, Neha [1 ]
机构
[1] Auburn Univ, Dept Entomol & Plant Pathol, Auburn, AL 36849 USA
[2] Univ Florida, Dept Plant Pathol, Apopka, FL USA
来源
MICROBIOLOGY SPECTRUM | 2024年 / 12卷 / 01期
基金
美国国家科学基金会;
关键词
plant-pathogen interactions; secretion system; T6SS; transcriptome sequencing; T3SS; biofilms; BACTERIAL TYPE VI; PSEUDOMONAS-SYRINGAE; BIOFILM FORMATION; VIBRIO-CHOLERAE; PROTEIN SECRETION; EPIPHYTIC FITNESS; PLANT; STRESS; COMPETITION; EXPRESSION;
D O I
10.1128/spectrum.02852-23
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Type VI secretion system (T6SS) is a versatile, contact-dependent contractile nano-weapon in Gram-negative bacteria that fires proteinaceous effector molecules directly into prokaryotic and eukaryotic cells aiding in manipulation of the host and killing of competitors in complex niches. In plant pathogenic xanthomonads, T6SS has been demonstrated to play these diverse roles in individual pathosystems. However, the molecular network underlying the regulation of T6SS is still elusive in Xanthomonas spp. To bridge this knowledge gap, we conducted an in vitro transcriptome screen using plant apoplast mimicking minimal medium, XVM2 medium, to decipher the effect of tssM deletion, a core gene belonging to T6SS-cluster i3*, on the regulation of gene expression in Xanthomonas perforans strain AL65. Transcriptomic data revealed that a total of 277 and 525 genes were upregulated, while 307 and 392 genes were downregulated in the mutant strain after 8 and 16 hours of growth in XVM2 medium. The transcript abundance of several genes associated with flagellum and pilus biogenesis as well as type III secretion system was downregulated in the mutant strain. Deletion of tssM of cluster-i3* resulted in upregulation of several T6SS genes belonging to cluster-i3*** and genes involved in biofilm and cell wall biogenesis. Similarly, transcription regulators like rpoN, Pho regulon, rpoE, and csrA were identified to be upregulated in the mutant strain. Our results suggest that T6SS modulates the expression of global regulators like csrA, rpoN, and pho regulons, triggering a signaling cascade, and co-ordinates the expression of suite of virulence factors, stress response genes, and metabolic genes.
引用
收藏
页数:22
相关论文
共 2 条