Investigating the Existence Results for Hilfer Fractional Stochastic Evolution Inclusions of Order 1 < p < 2

被引:0
作者
Pradeesh, J. [1 ]
Vijayakumar, V. [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
关键词
Fractional calculus; Stochastic system; Multivalued map; Mild solution; Fixed point technique; APPROXIMATE CONTROLLABILITY; DIFFERENTIAL-EQUATIONS; NONLOCAL CONDITIONS; MILD SOLUTIONS; UNIQUENESS;
D O I
10.1007/s12346-023-00899-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this article is to investigate the issue of existence results for Hilfer fractional stochastic differential inclusions of order 1 < <mu> < 2 in Hilbert spaces. Our discussion is based on fractional calculus, multivalued analysis, sine and cosine operators, and Bohnenblust-Karlin's fixed point theorem. At first, we investigate the existence of a mild solution for the Hilfer fractional stochastic differential system of order 1 < mu < 2. After that, we developed our system with Sobolev-type, and we provided the existence results of a mild solution for the considered system. Then, the ideas of nonlocal conditions are applied in the Sobolev-type Hilfer fractional stochastic system. Finally, an example is offered in order to illustrate the effectiveness of the main theory.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Investigating existence results for fractional evolution inclusions with order r ∈ (1,2) in Banach space
    Raja, Marimuthu Mohan
    Vijayakumar, Velusamy
    Shukla, Anurag
    Nisar, Kottakkaran Sooppy
    Rezapour, Shahram
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (06) : 2047 - 2060
  • [2] Approximate Controllability of Hilfer Fractional Stochastic Evolution Inclusions of Order 1 &lt; q &lt; 2
    Shukla, Anurag
    Panda, Sumati Kumari
    Vijayakumar, Velusamy
    Kumar, Kamalendra
    Thilagavathi, Kothandabani
    FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [3] Results on the existence and time optimal control results for Hilfer fractional stochastic differential inclusions in Hilbert spaces
    Dhanush, A.
    Vijayakumar, V.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025, : 3997 - 4023
  • [4] Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ? (1,2) with sectorial operators
    Raja, M. Mohan
    Vijayakumar, V.
    CHAOS SOLITONS & FRACTALS, 2022, 159
  • [5] The Existence of Mild Solutions for Hilfer Fractional Stochastic Evolution Equations with Order μ ∈ (1,2)
    Li, Qien
    Zhou, Yong
    FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [6] EXISTENCE RESULTS OF HILFER INTEGRO-DIFFERENTIAL EQUATIONS WITH FRACTIONAL ORDER
    Subashini, Ramasamy
    Ravichandran, Chokkalingam
    Jothimani, Kasthurisamy
    Baskonus, Haci Mehmet
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 911 - 923
  • [7] Existence and approximate controllability of Hilfer fractional impulsive evolution equations
    Qiu, Kee
    Feckan, Michal
    Wang, Jinrong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (01) : 146 - 180
  • [8] New discussion on the approximate controllability of Sobolev-type Hilfer fractional stochastic mixed Volterra-Fredholm integrodifferential inclusions of order 1 < μ < 2
    Pradeesh, J.
    Panda, Sumati Kumari
    Vijayakumar, V.
    Jothimani, K.
    Valliammal, N.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2025, 43 (02) : 131 - 161
  • [9] Existence results for Hilfer fractional evolution equations with boundary conditions
    Gou, Haide
    Li, Baolin
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2019, 10 (03) : 711 - 746
  • [10] Investigating the Existence Results for Hilfer Fractional Stochastic Evolution Inclusions of Order 1<μ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<{\mu }<2$$\end{document}
    J. Pradeesh
    V. Vijayakumar
    Qualitative Theory of Dynamical Systems, 2024, 23 (1)