The dependence of tungsten fuzz layer thickness and porosity on tungsten deposition rate and helium ion fluence

被引:5
作者
Patino, M. I. [1 ]
Nishijima, D. [1 ]
Baldwin, M. J. [1 ]
Tynan, G. R. [1 ]
机构
[1] Univ Calif San Diego, Ctr Energy Res, San Diego, CA 92093 USA
基金
美国国家科学基金会;
关键词
helium; tungsten; deposition; fuzz; large fiberform nanostructures; plasma-material interactions; GROWTH; NANOSTRUCTURES;
D O I
10.1088/1741-4326/ad0b1e
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fuzz formation on a heated tungsten surface in the presence of a helium-containing plasma and tungsten deposition source was investigated. Tungsten samples were exposed at 1123 K to pure helium plasma with ion incident energy of 76 eV, W/He ion flux ratio of similar to 0.4x10-4 , and varied helium ion fluence from 0.18 to 3.4x1026 m-2. Fuzz thickness was measured by cross-sectional scanning electron microscopy to increase from 0.22 to 15 mu m with increasing helium ion fluence. No indication of saturation in fuzz thickness at high fluence was observed, in contrast to fuzz produced on a tungsten surface without tungsten deposition. Additional tungsten samples were exposed at 1123 K to pure helium plasma with ion incident energy of 76 eV, helium ion fluence of similar to 3.4x1026 m-2, and varied W/He ion flux ratio from 0.26 to 3.0x10-4 . Fuzz thickness increased from 7.5 to 120 mu m with increasing W/He ion ratio. A final sample exposed at 1123 K to a mixed helium-deuterium plasma with ion incident energy of 76 eV, helium ion fluence of 0.18x1026 m-2, and W/He ion flux ratio of 2.2x10-4 developed nearly identical fuzz structures to that developed in a pure He plasma. As a function of deposited tungsten fluence, all results were found to trace out a single layer-growth curve given by a power law relation, indicating that fuzz thickness is independent of the W/He ion flux ratio in the range investigated and independent of any deuterium present in the plasma. As a result, for tungsten plasma facing walls in magnetic fusion devices at 1000-2000 K with 10-4 W/He ion flux ratio, fuzz with thicknesses greater than hundreds of microns may form in as little as 104 s (in the absence of ELM-induced erosion or annealing), and may more significantly affect its thermophysical properties than fuzz generated without a tungsten deposition source.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Density functional theory study on the reducing agents for atomic layer deposition of tungsten using tungsten chloride precursor [J].
Hidayat, Romel ;
Chowdhury, Tanzia ;
Kim, Yewon ;
Kim, Seongyoon ;
Mayangsari, Tirta Rona ;
Kim, Soo-Hyun ;
Lee, Won-Jun .
APPLIED SURFACE SCIENCE, 2021, 538
[32]   Incident ion energy dependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation [J].
Nishijima, D ;
Ye, MY ;
Ohno, N ;
Takamura, S .
JOURNAL OF NUCLEAR MATERIALS, 2003, 313 :97-101
[33]   Helium desorption in 3He implanted tungsten at low fluence and low energy [J].
Debelle, A. ;
Lhuillier, P. -E. ;
Barthe, M. -F. ;
Sauvage, T. ;
Desgardin, P. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2010, 268 (02) :223-226
[34]   Formation of interstitial loops in tungsten under helium ion irradiation: Rate theory modeling and experiment [J].
Watanabe, Y. ;
Iwakiri, H. ;
Yoshida, N. ;
Morishita, K. ;
Kohyama, A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 255 (01) :32-36
[35]   Deuterium trapping in the subsurface layer of tungsten pre-irradiated with helium ions [J].
Harutyunyan, Z. ;
Gasparyan, Yu. ;
Ryabtsev, S. ;
Efimov, V. ;
Ogorodnikova, O. ;
Pisarev, A. ;
Kanashenko, S. .
JOURNAL OF NUCLEAR MATERIALS, 2021, 548
[36]   Low-Temperature Atomic Layer Deposition of Tungsten using Tungsten Hexafluoride and Highly-diluted Silane in Argon [J].
Kalanyan, Berc ;
Losego, Mark D. ;
Oldham, Christopher J. ;
Parsons, Gregory N. .
CHEMICAL VAPOR DEPOSITION, 2013, 19 (4-6) :161-166
[37]   Influence of the Initial Defect Structure on Helium Trapping in Tungsten under Ion Implantation [J].
Ryabtsev, S. A. ;
Gasparyan, Yu. M. ;
Efimov, V. S. ;
Harutyunyan, Z. R. ;
Poskakalov, A. G. ;
Pisarev, A. A. ;
Kanashenko, S. L. ;
Ivanov, Yu. D. .
PHYSICS OF ATOMIC NUCLEI, 2018, 81 (11) :1541-1546
[38]   Influence of the Initial Defect Structure on Helium Trapping in Tungsten under Ion Implantation [J].
S. A. Ryabtsev ;
Yu. M. Gasparyan ;
V. S. Efimov ;
Z. R. Harutyunyan ;
A. G. Poskakalov ;
A. A. Pisarev ;
S. L. Kanashenko ;
Yu. D. Ivanov .
Physics of Atomic Nuclei, 2018, 81 :1541-1546
[39]   Helium retention in tungsten irradiated with He+ ion beam at elevated temperatures [J].
Ryabtsev, S. ;
Gasparyan, Yu. ;
Efimov, V. ;
Harutyunyan, Z. ;
Aksenova, A. ;
Poskakalov, A. ;
Pisarev, A. ;
Kanashenko, S. ;
Ivanov, Yu. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2019, 460 :108-113
[40]   Hydrogen isotope transport across tungsten surfaces exposed to a fusion relevant He ion fluence [J].
Baldwin, M. J. ;
Doerner, R. P. .
NUCLEAR FUSION, 2017, 57 (07)