Cellular localizability of unmanned aerial vehicles

被引:4
|
作者
Meer, Irshad A. [1 ]
Ozger, Mustafa [1 ]
Cavdar, Cicek [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Stockholm, Sweden
关键词
Localization; Unmanned aerial vehicles; Cellular networks; Interference; Air-to-ground channel; LOCALIZATION; NETWORKS; FUNDAMENTALS;
D O I
10.1016/j.vehcom.2023.100677
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
To enable pervasive applications of cellular-connected unmanned aerial vehicles (UAVs), localization plays a key role. The successful reception of localization signals from multiple base stations (BSs) is the first step to localize targets, which is called cellular localizability. In this paper, we propose an analytical framework to characterize the B-localizability of UAVs, which is defined as the probability of successfully receiving localization signals above a certain signal-to-interference plus noise ratio (SINR) level from at least B ground BSs. Our framework considers UAV-related system parameters in a three-dimensional environment and provides a comprehensive insight into factors affecting localizability such as distance distributions, path loss, interference, and received SINR. We perform simulation studies to explore the relationship between localizability and the number of participating BSs, SINR requirements of the received localization signals, air-to-ground channel characteristics, and network coordination. We also formulate an optimization problem to maximize localizability and investigate the effects of UAV altitude in different scenarios. Our study reveals that in an urban macro environment, the effectiveness of cellular network-based localization increases with altitude, with localizability reaching 100% above 60 meters. This finding indicates that utilizing cellular networks for UAV localization is a viable option.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Estimation and Tracking of a Moving Target by Unmanned Aerial Vehicles
    Li, Jun-Ming
    Chen, Ching Wen
    Cheng, Teng-Hu
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 3944 - 3949
  • [22] Cybersecurity of Unmanned Aerial Vehicles: A Survey
    Yu, Zhenhua
    Wang, Zhuolin
    Yu, Jiahao
    Liu, Dahai
    Song, Houbing Herbert
    Li, Zhiwu
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2024, 39 (09) : 182 - 215
  • [23] Directional Antenna for Unmanned Aerial Vehicles
    Sibruk, L. V.
    Zadorozhniy, R. O.
    Shcherbyna, O. A.
    Bondarenko, D. P.
    2016 IEEE RADAR METHODS AND SYSTEMS WORKSHOP (RMSW), 2016, : 118 - 121
  • [24] Mathematical Modelling of Unmanned Aerial Vehicles
    Sarwar, Saeed
    Saeed-Ur-Rehman
    Shah, Syed Feroz
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2013, 32 (04) : 615 - 622
  • [25] Cybersecurity in Unmanned Aerial Vehicles: a Review
    Shafik, Wasswa
    Matinkhah, S. Mojtaba
    Shokoor, Fawad
    INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2023, 16 (01):
  • [26] IoT-Cloud Empowered Aerial Scene Classification for Unmanned Aerial Vehicles
    Uthayan, K. R.
    Prasad, G. Lakshmi Vara
    Mohan, V.
    Bharatiraja, C.
    Pustokhina, Irina V.
    Pustokhin, Denis A.
    Diaz, Vicente Garcia
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 5161 - 5177
  • [27] COMMUNICATION SECURITY OF UNMANNED AERIAL VEHICLES
    He, Daojing
    Chan, Sammy
    Guizani, Mohsen
    IEEE WIRELESS COMMUNICATIONS, 2017, 24 (04) : 134 - 139
  • [28] Unmanned Aerial Vehicles Routing Problem
    Teichmann, Dusan
    Dorda, Michal
    Vitek, Jakub
    Smrz, Vladimir
    Michalik, Vladimir
    2014 15TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2014, : 602 - 607
  • [29] APPLICATIONS OF UNMANNED AERIAL VEHICLES: A REVIEW
    Nawaz, Haque
    Ali, Husnain Mansoor
    Massan, Shafiq-ur-Rehman
    3C TECNOLOGIA, 2019, (SI): : 85 - 105
  • [30] Autonomous Vision-Based Aerial Grasping for Rotorcraft Unmanned Aerial Vehicles
    Lin, Lishan
    Yang, Yuji
    Cheng, Hui
    Chen, Xuechen
    SENSORS, 2019, 19 (15)