Charting the course to solid-state dual-ion batteries

被引:10
作者
Asfaw, Habtom D. [1 ,3 ]
Kotronia, Antonia [2 ]
Garcia-Araez, Nuria [2 ]
Edstrom, Kristina [1 ]
Brandell, Daniel [1 ,3 ]
机构
[1] Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden
[2] Univ Southampton, Dept Chem, Southampton, England
[3] Uppsala Univ, Dept Chem, Angstrom Lab, Lagerhyddsvagen 1 POB 538, S-75121 Uppsala, Sweden
关键词
anion intercalation; concentrated electrolytes; dual-ion battery; graphite; ionic liquids; polymer electrolyte; HEXAFLUOROPHOSPHATE ANION INTERCALATION; COMPOSITE POLYMER ELECTROLYTES; ALUMINUM CURRENT COLLECTORS; X-RAY-DIFFRACTION; ELECTROCHEMICAL INTERCALATION; GRAPHITE ELECTRODE; HIGH-VOLTAGE; LIQUID ELECTROLYTES; HIGH-ENERGY; BIS(TRIFLUOROMETHANESULFONYL) IMIDE;
D O I
10.1002/cey2.425
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An electrolyte destined for use in a dual-ion battery (DIB) must be stable at the inherently high potential required for anion intercalation in the graphite electrode, while also protecting the Al current collector from anodic dissolution. A higher salt concentration is needed in the electrolyte, in comparison to typical battery electrolytes, to maximize energy density, while ensuring acceptable ionic conductivity and operational safety. In recent years, studies have demonstrated that highly concentrated organic electrolytes, ionic liquids, gel polymer electrolytes (GPEs), ionogels, and water-in-salt electrolytes can potentially be used in DIBs. GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency, energy density, and long-term cycle life of DIBs. Furthermore, GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance. In this review, we highlight the latest advances in the application of different electrolytes in DIBs, with particular emphasis on GPEs.
引用
收藏
页数:46
相关论文
共 50 条
[41]   Sodium Dual-Ion Batteries with Concentrated Electrolytes [J].
Guo, Zhenyu ;
Cheng, Gang ;
Xu, Zhen ;
Xie, Fei ;
Hu, Yong-Sheng ;
Mattevi, Cecilia ;
Titirici, Maria-Magdalena ;
Ribadeneyra, Maria Crespo .
CHEMSUSCHEM, 2023, 16 (04)
[42]   Fundamental Understanding and Optimization Strategies for Dual-Ion Batteries: A Review [J].
Chen, Chong ;
Lee, Chun-Sing ;
Tang, Yongbing .
NANO-MICRO LETTERS, 2023, 15 (01)
[43]   Anion Hosting Cathodes in Dual-Ion Batteries [J].
Rodriguez-Perez, Ismael A. ;
Ji, Xiulei .
ACS ENERGY LETTERS, 2017, 2 (08) :1762-1770
[44]   Thermal Stability of Graphite Electrode as Cathode for Dual-Ion Batteries [J].
Zhao, Yu ;
Xue, Kaiming ;
Tan, Tian ;
Yu, Denis Y. W. .
CHEMSUSCHEM, 2023, 16 (04)
[45]   Development of Safe and Sustainable Dual-Ion Batteries Through Hybrid Aqueous/Nonaqueous Electrolytes [J].
Wrogemann, Jens Matthies ;
Kuenne, Sven ;
Heckmann, Andreas ;
Rodriguez-Perez, Ismael A. ;
Siozios, Vassilios ;
Yan, Bo ;
Li, Jie ;
Winter, Martin ;
Beltrop, Kolja ;
Placke, Tobias .
ADVANCED ENERGY MATERIALS, 2020, 10 (08)
[46]   Perspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries [J].
Placke, Tobias ;
Heckmann, Andreas ;
Schmuch, Richard ;
Meister, Paul ;
Beltrop, Kolja ;
Winter, Martin .
JOULE, 2018, 2 (12) :2528-2550
[47]   An Integrated Design of Electrodes for Flexible Dual-Ion Batteries [J].
Li, Wen-Hao ;
Li, Yue-Ming ;
Yang, Jia-Lin ;
Wu, Xing-Long .
CHEMSUSCHEM, 2023, 16 (04)
[48]   Polypyrrole as an ultrafast organic cathode for dual-ion batteries [J].
Sun, Tao ;
Sun, Qi-Qi ;
Yu, Yue ;
Zhang, Xin-Bo .
ESCIENCE, 2021, 1 (02) :186-193
[49]   A review of the advances and prospects of aqueous Dual-Ion batteries [J].
Guan, Shuhua ;
Peng, Qiaoling ;
Guo, Xiuli ;
Zheng, Ye ;
Liao, Enda ;
Sun, Shuling ;
Shin, Kyungsoo ;
Liu, Botian ;
Zhou, Xiaolong ;
Zou, Caineng ;
Tang, Yongbing .
CHEMICAL ENGINEERING JOURNAL, 2024, 493
[50]   Advances in Low-Temperature Dual-Ion Batteries [J].
Yu, Dandan ;
Li, Kexin ;
Ma, Guiyou ;
Ru, Fei ;
Zhang, Xiaokun ;
Luo, Wen ;
Hu, Pengfei ;
Chen, Da ;
Wang, Hua .
CHEMSUSCHEM, 2023, 16 (04)