Charting the course to solid-state dual-ion batteries

被引:10
作者
Asfaw, Habtom D. [1 ,3 ]
Kotronia, Antonia [2 ]
Garcia-Araez, Nuria [2 ]
Edstrom, Kristina [1 ]
Brandell, Daniel [1 ,3 ]
机构
[1] Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden
[2] Univ Southampton, Dept Chem, Southampton, England
[3] Uppsala Univ, Dept Chem, Angstrom Lab, Lagerhyddsvagen 1 POB 538, S-75121 Uppsala, Sweden
关键词
anion intercalation; concentrated electrolytes; dual-ion battery; graphite; ionic liquids; polymer electrolyte; HEXAFLUOROPHOSPHATE ANION INTERCALATION; COMPOSITE POLYMER ELECTROLYTES; ALUMINUM CURRENT COLLECTORS; X-RAY-DIFFRACTION; ELECTROCHEMICAL INTERCALATION; GRAPHITE ELECTRODE; HIGH-VOLTAGE; LIQUID ELECTROLYTES; HIGH-ENERGY; BIS(TRIFLUOROMETHANESULFONYL) IMIDE;
D O I
10.1002/cey2.425
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An electrolyte destined for use in a dual-ion battery (DIB) must be stable at the inherently high potential required for anion intercalation in the graphite electrode, while also protecting the Al current collector from anodic dissolution. A higher salt concentration is needed in the electrolyte, in comparison to typical battery electrolytes, to maximize energy density, while ensuring acceptable ionic conductivity and operational safety. In recent years, studies have demonstrated that highly concentrated organic electrolytes, ionic liquids, gel polymer electrolytes (GPEs), ionogels, and water-in-salt electrolytes can potentially be used in DIBs. GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency, energy density, and long-term cycle life of DIBs. Furthermore, GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance. In this review, we highlight the latest advances in the application of different electrolytes in DIBs, with particular emphasis on GPEs.
引用
收藏
页数:46
相关论文
共 50 条
  • [21] Reversible Copper Cathode for Nonaqueous Dual-Ion Batteries
    Yu, Mingliang
    Sui, Yiming
    Sandstrom, Sean K.
    Wu, Che-Yu
    Yang, Hao
    Stickle, William
    Luo, Wei
    Ji, Xiulei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (47)
  • [22] Some basics and details for better dual-ion batteries
    Xu, Wenhao
    Li, Libo
    Zhao, Yangmingyue
    Li, Suo
    Yang, Hang
    Tong, Hao
    Wang, Zhixuan
    ENERGY & ENVIRONMENTAL SCIENCE, 2025, 18 (06) : 2686 - 2719
  • [23] 2020 roadmap on solid-state batteries
    Pasta, Mauro
    Armstrong, David
    Brown, Zachary L.
    Bu, Junfu
    Castell, Martin R.
    Chen, Peiyu
    Cocks, Alan
    Corr, Serena A.
    Cussen, Edmund J.
    Darnbrough, Ed
    Deshpande, Vikram
    Doerrer, Christopher
    Dyer, Matthew S.
    El-Shinawi, Hany
    Fleck, Norman
    Grant, Patrick
    Gregory, Georgina L.
    Grovenor, Chris
    Hardwick, Laurence J.
    Irvine, John T. S.
    Lee, Hyeon Jeong
    Li, Guanchen
    Liberti, Emanuela
    McClelland, Innes
    Monroe, Charles
    Nellist, Peter D.
    Shearing, Paul R.
    Shoko, Elvis
    Song, Weixin
    Jolly, Dominic Spencer
    Thomas, Christopher, I
    Turrell, Stephen J.
    Vestli, Mihkel
    Williams, Charlotte K.
    Zhou, Yundong
    Bruce, Peter G.
    JOURNAL OF PHYSICS-ENERGY, 2020, 2 (03):
  • [24] WS2-Graphite Dual-Ion Batteries
    Bellani, Sebastiano
    Wang, Faxing
    Longoni, Gianluca
    Najafi, Leyla
    Oropesa-Nunez, Reinier
    Castillo, Antonio E. Del Rio
    Prato, Mirko
    Zhuang, Xiaodong
    Pellegrini, Vittorio
    Feng, Xinliang
    Bonaccorso, Francesco
    NANO LETTERS, 2018, 18 (11) : 7155 - 7164
  • [25] Review of electrolyte strategies for competitive dual-ion batteries
    Li, J.
    Hui, K. S.
    Dinh, D. A.
    Wu, S.
    Fan, X.
    Chen, F.
    Hui, K. N.
    MATERIALS TODAY SUSTAINABILITY, 2022, 19
  • [26] Ternary Ionogel Electrolytes Enable Quasi-Solid-State Potassium Dual-Ion Intercalation Batteries
    Kotronia, Antonia
    Edstrom, Kristina
    Brandell, Daniel
    Asfaw, Habtom Desta
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (01):
  • [27] Negative sulfur-based electrodes and their application in battery cells: Dual-ion batteries as an example
    Kuepers, Verena
    Kolek, Martin
    Bieker, Peter
    Stan, Marian Cristian
    Placke, Tobias
    Winter, Martin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (09) : 2077 - 2088
  • [28] Electrochemically Exfoliated Graphene Electrode for High-Performance Rechargeable Chloroaluminate and Dual-Ion Batteries
    Ejigu, Andinet
    Le Fevre, Lewis W.
    Fujisawa, Kazunori
    Terrones, Mauricio
    Forsyth, Andrew J.
    Dryfe, Robert A. W.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (26) : 23261 - 23270
  • [29] Rationalizing the Anion Storage in Cathodes for Optimum Dual-Ion Batteries: State of the Art and the Prospect
    Yang, He
    Qin, Tingting
    Deng, Ting
    Zhang, Wei
    Zheng, Weitao
    ENERGY & FUELS, 2020, 34 (12) : 15701 - 15713
  • [30] A robust 3D nanostructured composite polymer electrolyte with novel dual-ion channels toward solid-state sodium metal batteries
    Cui, Yunlong
    Zhang, Pengyu
    Tian, Yuan
    Wang, Cheng
    Wang, Su
    Zhang, Yan
    Shi, Xixi
    Ma, Yue
    Song, Dawei
    Zhang, Hongzhou
    Liu, Kai
    Zhang, Na
    Zhang, Lianqi
    CHEMICAL ENGINEERING JOURNAL, 2024, 498