Skeleton-Guided Action Recognition with Multistream 3D Convolutional Neural Network for Elderly-Care Robot

被引:1
作者
Zhang, Dawei [1 ]
Zhang, Yanmin [2 ]
Zhou, Meng [1 ]
机构
[1] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
action recognition; deep learning; service robots; 2-STREAM;
D O I
10.1002/aisy.202300326
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the arrival of a global aging society, elderly-care robots are becoming more and more attractive and can provide better caring services through action recognition. This article presents a skeleton-guided action recognition framework with multistream 3D convolutional neural network. Two parallel dual-stream lightweight networks are proposed to enhance the feature extraction ability of human action and meanwhile reduce computation. Two different modes of skeleton input video are constructed to improve the recognition accuracy by decision fusion. The backbone networks adopt Resnet-18, the feature fusion layer and sliding window mechanism are both designed, and two cross-entropy losses are used to supervise their training. A dataset (named elder care action recognition (EC-AR)) with different categories of action is built. The experimental results on HMDB-51 and EC-AR datasets both demonstrate that the proposed framework outperforms the existing methods. The developed method is also applied to a prototype of elderly-care robots, and the test results in home scenarios show that it still has high recognition accuracy and good real-time performance. This article presents a skeleton-guided action recognition framework with multistream 3D convolutional neural network for elderly-care robot. Two parallel dual-stream Light-SlowFast networks based on ResNet-18 are proposed to enhance the feature extraction ability of human action and meanwhile reduce computation. Two different modes of skeleton input video are constructed to improve the recognition accuracy by decision fusion.image & COPY; 2023 WILEY-VCH GmbH
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Multi-scale spatial–temporal convolutional neural network for skeleton-based action recognition
    Qin Cheng
    Jun Cheng
    Ziliang Ren
    Qieshi Zhang
    Jianming Liu
    Pattern Analysis and Applications, 2023, 26 (3) : 1303 - 1315
  • [22] Short-Term Action Recognition by 3D Convolutional Neural Network with Pixel-Wise Evidences
    Wang, XiaoHan
    Miyao, Junichi
    Kurita, Takio
    FRONTIERS OF COMPUTER VISION, 2020, 1212 : 69 - 82
  • [23] Action recognition method based on a novel keyframe extraction method and enhanced 3D convolutional neural network
    Tian, Qiuhong
    Li, Saiwei
    Zhang, Yuankui
    Lu, Hongyi
    Pan, Hao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025, 16 (01) : 475 - 491
  • [24] 3D Convolutional Two-Stream Network for Action Recognition in Videos
    Li, Min
    Qi, Yuezhu
    Yang, Jian
    Zhang, Yanfang
    Ren, Junxing
    Du, Hong
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1697 - 1701
  • [25] RECOGNITION OF 3D SURFACE FRACTAL DIMENSION BASED ON CONVOLUTIONAL NEURAL NETWORK
    Wang, Liuqun
    Lei, Sheng
    Wang, Zijie
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [26] A 3D Convolutional Neural Network for Emotion Recognition based on EEG Signals
    Zhao, Yuxuan
    Yang, Jin
    Lin, Jinlong
    Yu, Dunshan
    Cao, Xixin
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [27] DDC3N: Doppler-Driven Convolutional 3D Network for Human Action Recognition
    Toshpulatov, Mukhiddin
    Lee, Wookey
    Lee, Suan
    Yoon, Hoyoung
    Kang, U. Kang
    IEEE ACCESS, 2024, 12 : 93546 - 93567
  • [28] Using Gabor Filter in 3D Convolutional Neural Networks for Human Action Recognition
    Li, Jiakun
    Wang, Tian
    Zhou, Yi
    Wang, Ziyu
    Snoussi, Hichem
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11139 - 11144
  • [29] Multi-scale spatial-temporal convolutional neural network for skeleton-based action recognition
    Cheng, Qin
    Cheng, Jun
    Ren, Ziliang
    Zhang, Qieshi
    Liu, Jianming
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 1303 - 1315
  • [30] 3D Convolutional Spiking Neural Network for Human Action Recognition Using Modulating STDP With Global Error Feedback
    Nawarathne, Thoshara
    Leung, Henry
    18TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE, SYSCON 2024, 2024,