LPNet: A Reaction-Based Local Planner for Autonomous Collision Avoidance Using Imitation Learning

被引:5
作者
Lu, Junjie [1 ]
Tian, Bailing [1 ]
Shen, Hongming [1 ]
Zhang, Xuewei [1 ]
Hui, Yulin [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Egineering, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Integrated planning and learning; collision avoidance; aerial systems: perception and autonomy; TRAJECTORY GENERATION; FLIGHT;
D O I
10.1109/LRA.2023.3314350
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this work, we propose a reaction-based local planner for autonomous collision avoidance of quadrotor in obstacle-cluttered environment without relying on an explicit map. Our approach searches for feasible trajectory using a set of motion primitives in state lattice and represents the optimal one as a polynomial by solving an optimal control problem. A modified Q-network, termed LPNet, is presented to predict the action-values of motion primitives from the current depth image and the state estimation of the quadrotor directly. To train the proposed LPNet, a primitive-based expert policy with privileged information about the surroundings and unconstrained computational budget is developed to provide demonstrations for imitation learning. Finally, a series of experiments are conducted to demonstrate the effectiveness and time-efficiency of the proposed method in both simulation and real-world.
引用
收藏
页码:7058 / 7065
页数:8
相关论文
共 23 条
[1]  
Dharmadhikari M, 2020, IEEE INT CONF ROBOT, P179, DOI [10.1109/ICRA40945.2020.9196964, 10.1109/icra40945.2020.9196964]
[2]  
Gao F, 2017, IEEE INT C INT ROBOT, P3681, DOI 10.1109/IROS.2017.8206214
[3]  
Gao F, 2016, IEEE INT SYMP SAFE, P139, DOI 10.1109/SSRR.2016.7784290
[4]  
Han LX, 2019, IEEE INT C INT ROBOT, P4423, DOI [10.1109/iros40897.2019.8968199, 10.1109/IROS40897.2019.8968199]
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]  
Kalakrishnan M., 2011, 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), P4569, DOI 10.1109/ICRA.2011.5980280
[7]  
Liu SK, 2017, IEEE INT C INT ROBOT, P2872, DOI 10.1109/IROS.2017.8206119
[8]   Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments [J].
Liu, Sikang ;
Watterson, Michael ;
Mohta, Kartik ;
Sun, Ke ;
Bhattacharya, Subhrajit ;
Taylor, Camillo J. ;
Kumar, Vijay .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (03) :1688-1695
[9]   Learning high-speed flight in the wild [J].
Loquercio, Antonio ;
Kaufmann, Elia ;
Ranftl, Rene ;
Mueller, Matthias ;
Koltun, Vladlen ;
Scaramuzza, Davide .
SCIENCE ROBOTICS, 2021, 6 (59)
[10]   DroNet: Learning to Fly by Driving [J].
Loquercio, Antonio ;
Maqueda, Ana I. ;
del-Blanco, Carlos R. ;
Scaramuzza, Davide .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (02) :1088-1095