Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors

被引:40
作者
Chen, Weizhong [1 ,2 ]
Ma, Jiacheng [1 ]
Wu, Zhaowei [1 ]
Wang, Zhipeng [1 ]
Zhang, Hongyuan [1 ]
Fu, Wenhan [1 ]
Pan, Deng [1 ]
Shi, Jin [1 ]
Ji, Quanjiang [1 ,3 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] Ningbo Univ, Sch Marine Sci, Ningbo 315832, Zhejiang, Peoples R China
[3] ShanghaiTech Univ, Gene Editing Ctr, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
STRUCTURAL BASIS; DNA; CLEAVAGE; SYSTEMS; ENDONUCLEASE; RECOGNITION; ALIGNMENT; COMPLEX; CPF1; PHI;
D O I
10.1016/j.molcel.2023.06.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Type V CRISPR-associated systems (Cas)12 family nucleases are considered to have evolved from transposon-associated TnpB, and several of these nucleases have been engineered as versatile genome editors. Despite the conserved RNA-guided DNA-cleaving functionality, these Cas12 nucleases differ markedly from the currently identified ancestor TnpB in aspects such as guide RNA origination, effector complex composition, and protospacer adjacent motif (PAM) specificity, suggesting the presence of earlier evolutionary intermediates that could be mined to develop advanced genome manipulation biotechnologies. Using evolutionary and biochemical analyses, we identify that the miniature type V-U4 nuclease (referred to as Cas12n, 400-700 amino acids) is likely the earliest evolutionary intermediate between TnpB and large type V CRISPR systems. We demonstrate that with the exception of CRISPR array emergence, CRISPR-Cas12n shares several similar characteristics with TnpB-uRNA, including a miniature and likely monomeric nuclease for DNA targeting, origination of guide RNA from nuclease coding sequence, and generation of a small sticky end following DNA cleavage. Cas12n nucleases recognize a unique 50-AAN PAM sequence, of which the A nucleotide at the-2 position is also required for TnpB. Moreover, we demonstrate the robust genome-editing capacity of Cas12n in bacteria and engineer a highly efficient CRISPR-Cas12n (termed Cas12Pro) with up to 80% indel efficiency in human cells. The engineered Cas12Pro enables base editing in human cells. Our results further expand the understanding regarding type V CRISPR evolutionary mechanisms and enrich the miniature CRISPR toolbox for therapeutic applications.
引用
收藏
页码:2768 / +
页数:20
相关论文
共 68 条
[51]   Diversity and evolution of class 2 CRISPR-Cas systems [J].
Shmakov, Sergey ;
Smargon, Aaron ;
Scott, David ;
Cox, David ;
Pyzocha, Neena ;
Yan, Winston ;
Abudayyeh, Omar O. ;
Gootenberg, Jonathan S. ;
Makarova, Kira S. ;
Wolf, Yuri I. ;
Severinov, Konstantin ;
Zhang, Feng ;
Koonin, Eugene V. .
NATURE REVIEWS MICROBIOLOGY, 2017, 15 (03) :169-182
[52]   Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems [J].
Shmakov, Sergey ;
Abudayyeh, Omar O. ;
Makarova, Kira S. ;
Wolf, Yuri I. ;
Gootenberg, Jonathan S. ;
Semenova, Ekaterina ;
Minakhin, Leonid ;
Joung, Julia ;
Konermann, Silvana ;
Severinov, Konstantin ;
Zhang, Feng ;
Koonin, Eugene V. .
MOLECULAR CELL, 2015, 60 (03) :385-397
[53]   RNA-guided DNA insertion with CRISPR-associated transposases [J].
Strecker, Jonathan ;
Ladha, Alim ;
Gardner, Zachary ;
Schmid-Burgk, Jonathan L. ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
Zhang, Feng .
SCIENCE, 2019, 365 (6448) :48-+
[54]   Engineering of CRISPR-Cas12b for human genome editing [J].
Strecker, Jonathan ;
Jones, Sara ;
Koopal, Balwina ;
Schmid-Burgk, Jonathan ;
Zetsche, Bernd ;
Gao, Linyi ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
Zhang, Feng .
NATURE COMMUNICATIONS, 2019, 10 (1)
[55]   The compact Casπ (Cas12l) 'bracelet' provides a unique structural platform for DNA manipulation [J].
Sun, Ao ;
Li, Cheng-Ping ;
Chen, Zhihang ;
Zhang, Shouyue ;
Li, Dan-Yuan ;
Yang, Yun ;
Li, Long-Qi ;
Zhao, Yuqian ;
Wang, Kaichen ;
Li, Zhaofu ;
Liu, Jinxia ;
Liu, Sitong ;
Wang, Jia ;
Liu, Jun-Jie Gogo .
CELL RESEARCH, 2023, 33 (03) :229-244
[56]   Structure of the miniature type V-F CRISPR-Cas effector enzyme [J].
Takeda, Satoru N. ;
Nakagawa, Ryoya ;
Okazaki, Sae ;
Hirano, Hisato ;
Kobayashi, Kan ;
Kusakizako, Tsukasa ;
Nishizawa, Tomohiro ;
Yamashita, Keitaro ;
Nishimasu, Hiroshi ;
Nureki, Osamu .
MOLECULAR CELL, 2021, 81 (03) :558-570.e3
[57]   GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases [J].
Tsai, Shengdar Q. ;
Zheng, Zongli ;
Nguyen, Nhu T. ;
Liebers, Matthew ;
Topkar, Ved V. ;
Thapar, Vishal ;
Wyvekens, Nicolas ;
Khayter, Cyd ;
Iafrate, A. John ;
Le, Long P. ;
Aryee, Martin J. ;
Joung, J. Keith .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :187-197
[58]   A new family of CRISPR-type V nucleases with C-rich PAM recognition [J].
Urbaitis, Tomas ;
Gasiunas, Giedrius ;
Young, Joshua K. ;
Hou, Zhenglin ;
Paulraj, Sushmitha ;
Godliauskaite, Egle ;
Juskeviciene, Mantvyda M. ;
Stitilyte, Migle ;
Jasnauskaite, Monika ;
Mabuchi, Megumu ;
Robb, G. Brett ;
Siksnys, Virginijus .
EMBO REPORTS, 2022, 23 (12)
[59]   Unravelling the structural and mechanistic basis of CRISPR-Cas systems [J].
van der Oost, John ;
Westra, Edze R. ;
Jackson, Ryan N. ;
Wiedenheft, Blake .
NATURE REVIEWS MICROBIOLOGY, 2014, 12 (07) :479-492
[60]   CRISPR/Cas9 in Genome Editing and Beyond [J].
Wang, Haifeng ;
La Russa, Marie ;
Qi, Lei S. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 85, 2016, 85 :227-264