Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors

被引:32
作者
Chen, Weizhong [1 ,2 ]
Ma, Jiacheng [1 ]
Wu, Zhaowei [1 ]
Wang, Zhipeng [1 ]
Zhang, Hongyuan [1 ]
Fu, Wenhan [1 ]
Pan, Deng [1 ]
Shi, Jin [1 ]
Ji, Quanjiang [1 ,3 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] Ningbo Univ, Sch Marine Sci, Ningbo 315832, Zhejiang, Peoples R China
[3] ShanghaiTech Univ, Gene Editing Ctr, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
STRUCTURAL BASIS; DNA; CLEAVAGE; SYSTEMS; ENDONUCLEASE; RECOGNITION; ALIGNMENT; COMPLEX; CPF1; PHI;
D O I
10.1016/j.molcel.2023.06.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Type V CRISPR-associated systems (Cas)12 family nucleases are considered to have evolved from transposon-associated TnpB, and several of these nucleases have been engineered as versatile genome editors. Despite the conserved RNA-guided DNA-cleaving functionality, these Cas12 nucleases differ markedly from the currently identified ancestor TnpB in aspects such as guide RNA origination, effector complex composition, and protospacer adjacent motif (PAM) specificity, suggesting the presence of earlier evolutionary intermediates that could be mined to develop advanced genome manipulation biotechnologies. Using evolutionary and biochemical analyses, we identify that the miniature type V-U4 nuclease (referred to as Cas12n, 400-700 amino acids) is likely the earliest evolutionary intermediate between TnpB and large type V CRISPR systems. We demonstrate that with the exception of CRISPR array emergence, CRISPR-Cas12n shares several similar characteristics with TnpB-uRNA, including a miniature and likely monomeric nuclease for DNA targeting, origination of guide RNA from nuclease coding sequence, and generation of a small sticky end following DNA cleavage. Cas12n nucleases recognize a unique 50-AAN PAM sequence, of which the A nucleotide at the-2 position is also required for TnpB. Moreover, we demonstrate the robust genome-editing capacity of Cas12n in bacteria and engineer a highly efficient CRISPR-Cas12n (termed Cas12Pro) with up to 80% indel efficiency in human cells. The engineered Cas12Pro enables base editing in human cells. Our results further expand the understanding regarding type V CRISPR evolutionary mechanisms and enrich the miniature CRISPR toolbox for therapeutic applications.
引用
收藏
页码:2768 / +
页数:20
相关论文
共 68 条
  • [51] Diversity and evolution of class 2 CRISPR-Cas systems
    Shmakov, Sergey
    Smargon, Aaron
    Scott, David
    Cox, David
    Pyzocha, Neena
    Yan, Winston
    Abudayyeh, Omar O.
    Gootenberg, Jonathan S.
    Makarova, Kira S.
    Wolf, Yuri I.
    Severinov, Konstantin
    Zhang, Feng
    Koonin, Eugene V.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2017, 15 (03) : 169 - 182
  • [52] Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems
    Shmakov, Sergey
    Abudayyeh, Omar O.
    Makarova, Kira S.
    Wolf, Yuri I.
    Gootenberg, Jonathan S.
    Semenova, Ekaterina
    Minakhin, Leonid
    Joung, Julia
    Konermann, Silvana
    Severinov, Konstantin
    Zhang, Feng
    Koonin, Eugene V.
    [J]. MOLECULAR CELL, 2015, 60 (03) : 385 - 397
  • [53] RNA-guided DNA insertion with CRISPR-associated transposases
    Strecker, Jonathan
    Ladha, Alim
    Gardner, Zachary
    Schmid-Burgk, Jonathan L.
    Makarova, Kira S.
    Koonin, Eugene V.
    Zhang, Feng
    [J]. SCIENCE, 2019, 365 (6448) : 48 - +
  • [54] Engineering of CRISPR-Cas12b for human genome editing
    Strecker, Jonathan
    Jones, Sara
    Koopal, Balwina
    Schmid-Burgk, Jonathan
    Zetsche, Bernd
    Gao, Linyi
    Makarova, Kira S.
    Koonin, Eugene V.
    Zhang, Feng
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [55] The compact Casπ (Cas12l) 'bracelet' provides a unique structural platform for DNA manipulation
    Sun, Ao
    Li, Cheng-Ping
    Chen, Zhihang
    Zhang, Shouyue
    Li, Dan-Yuan
    Yang, Yun
    Li, Long-Qi
    Zhao, Yuqian
    Wang, Kaichen
    Li, Zhaofu
    Liu, Jinxia
    Liu, Sitong
    Wang, Jia
    Liu, Jun-Jie Gogo
    [J]. CELL RESEARCH, 2023, 33 (03) : 229 - 244
  • [56] Structure of the miniature type V-F CRISPR-Cas effector enzyme
    Takeda, Satoru N.
    Nakagawa, Ryoya
    Okazaki, Sae
    Hirano, Hisato
    Kobayashi, Kan
    Kusakizako, Tsukasa
    Nishizawa, Tomohiro
    Yamashita, Keitaro
    Nishimasu, Hiroshi
    Nureki, Osamu
    [J]. MOLECULAR CELL, 2021, 81 (03) : 558 - 570.e3
  • [57] GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
    Tsai, Shengdar Q.
    Zheng, Zongli
    Nguyen, Nhu T.
    Liebers, Matthew
    Topkar, Ved V.
    Thapar, Vishal
    Wyvekens, Nicolas
    Khayter, Cyd
    Iafrate, A. John
    Le, Long P.
    Aryee, Martin J.
    Joung, J. Keith
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (02) : 187 - 197
  • [58] A new family of CRISPR-type V nucleases with C-rich PAM recognition
    Urbaitis, Tomas
    Gasiunas, Giedrius
    Young, Joshua K.
    Hou, Zhenglin
    Paulraj, Sushmitha
    Godliauskaite, Egle
    Juskeviciene, Mantvyda M.
    Stitilyte, Migle
    Jasnauskaite, Monika
    Mabuchi, Megumu
    Robb, G. Brett
    Siksnys, Virginijus
    [J]. EMBO REPORTS, 2022, 23 (12)
  • [59] Unravelling the structural and mechanistic basis of CRISPR-Cas systems
    van der Oost, John
    Westra, Edze R.
    Jackson, Ryan N.
    Wiedenheft, Blake
    [J]. NATURE REVIEWS MICROBIOLOGY, 2014, 12 (07) : 479 - 492
  • [60] CRISPR/Cas9 in Genome Editing and Beyond
    Wang, Haifeng
    La Russa, Marie
    Qi, Lei S.
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, VOL 85, 2016, 85 : 227 - 264