Deep Learning Segmentation of the Nucleus Basalis of Meynert on 3T MRI

被引:3
|
作者
Doss, D. J. [1 ,2 ,6 ,15 ]
Johnson, G. W. [1 ,2 ,6 ]
Narasimhan, S. [1 ,2 ,6 ,7 ]
Shless, J. S. [2 ,7 ]
Jiang, J. W. [2 ,7 ]
Gonzaez, H. F. J. [1 ,2 ,6 ]
Paulo, D. L. [7 ]
Lucas, A. [11 ]
Davis, K. A. [12 ,13 ,14 ]
Chang, C. [1 ,2 ,3 ,4 ,6 ]
Morgan, V. L. [1 ,2 ,6 ,7 ,8 ,9 ]
Constantinidis, C. [1 ,5 ,10 ]
Dawant, B. M. [2 ,3 ,6 ]
Englot, D. J. [1 ,2 ,3 ,6 ,7 ,9 ]
机构
[1] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37212 USA
[2] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN 37212 USA
[3] Vanderbilt Univ, Dept Elect & Comp Engn, Nashville, TN 37212 USA
[4] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37212 USA
[5] Vanderbilt Univ, Dept Neurosci, Nashville, TN 37212 USA
[6] Vanderbilt Inst Surg & Engn, Nashville, TN USA
[7] Vanderbilt Univ, Med Ctr, Dept Neurol Surg, Nashville, TN 37212 USA
[8] Vanderbilt Univ, Med Ctr, Dept Neurol, Nashville, TN 37212 USA
[9] Vanderbilt Univ, Med Ctr, Dept Radiol Sci, Nashville, TN 37212 USA
[10] Vanderbilt Univ, Med Ctr, Dept Ophthalmol & Visual Sci, Nashville, TN 37212 USA
[11] Univ Penn, Dept Bioengn, Philadelphia, PA USA
[12] Univ Penn, Dept Neurosci, Philadelphia, PA USA
[13] Univ Penn, Ctr Neuroengn & Therapeut, Philadelphia, PA USA
[14] Univ Penn, Dept Neurol, Philadelphia, PA USA
[15] Vanderbilt Univ, 1500 21st Ave South,VAV 4340, Nashville, TN 37212 USA
基金
美国国家卫生研究院;
关键词
SUBSTANTIA INNOMINATA; FOREBRAIN ATROPHY; BRAIN-STIMULATION; ALZHEIMERS; DISEASE; ASSOCIATION; DEMENTIA; SYSTEM; VOLUME; MAPS;
D O I
10.3174/ajnr.A7950
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSE: The nucleus basalis of Meynert is a key subcortical structure that is important in arousal and cognition and has been explored as a deep brain stimulation target but is difficult to study due to its small size, variability among patients, and lack of contrast on 3T MR imaging. Thus, our goal was to establish and evaluate a deep learning network for automatic, accurate, and patient-specific segmentations with 3T MR imaging. MATERIALS AND METHODS: Patient-specific segmentations can be produced manually; however, the nucleus basalis of Meynert is difficult to accurately segment on 3T MR imaging, with 7T being preferred. Thus, paired 3T and 7T MR imaging data sets of 21 healthy subjects were obtained. A test data set of 6 subjects was completely withheld. The nucleus was expertly segmented on 7T, providing accurate labels for the paired 3T MR imaging. An external data set of 14 patients with temporal lobe epilepsy was used to test the model on brains with neurologic disorders. A 3D-Unet convolutional neural network was constructed, and a 5-fold cross-validation was performed. RESULTS: The novel segmentation model demonstrated significantly improved Dice coefficients over the standard probabilistic atlas for both healthy subjects (mean, 0.68 [SD, 0.10] versus 0.45 [SD, 0.11], P =.002, t test) and patients (0.64 [SD, 0.10] versus 0.37 [SD, 0.22], P,.001). Additionally, the model demonstrated significantly decreased centroid distance in patients (1.18 [SD, 0.43] mm, 3.09 [SD, 2.56] mm, P =.007). CONCLUSIONS: We developed the first model, to our knowledge, for automatic and accurate patient-specific segmentation of the nucleus basalis of Meynert. This model may enable further study into the nucleus, impacting new treatments such as deep brain stimulation.
引用
收藏
页码:1020 / 1025
页数:6
相关论文
共 50 条
  • [41] Deep-Learning-Based Segmentation of the Shoulder from MRI with Inference Accuracy Prediction
    Hess, Hanspeter
    Ruckli, Adrian C.
    Burki, Finn
    Gerber, Nicolas
    Menzemer, Jennifer
    Burger, Juergen
    Schar, Michael
    Zumstein, Matthias A.
    Gerber, Kate
    DIAGNOSTICS, 2023, 13 (10)
  • [42] Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI
    Laukamp, Kai Roman
    Thiele, Frank
    Shakirin, Georgy
    Zopfs, David
    Faymonville, Andrea
    Timmer, Marco
    Maintz, David
    Perkuhn, Michael
    Borggrefe, Jan
    EUROPEAN RADIOLOGY, 2019, 29 (01) : 124 - 132
  • [43] A deep learning toolbox for automatic segmentation of subcortical limbic structures from MRI images
    Greve, Douglas N.
    Billot, Benjamin
    Cordero, Devani
    Hoopes, Andrew
    Hoffmann, Malte
    Dalca, Adrian N.
    Fischl, Bruce
    Iglesias, Juan Eugenio
    Augustinack, Jean C.
    NEUROIMAGE, 2021, 244
  • [44] Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review
    Jyothi, Parvathy
    Singh, A. Robert
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (04) : 2923 - 2969
  • [45] Deep Learning Whole-Gland and Zonal Prostate Segmentation on a Public MRI Dataset
    Cuocolo, Renato
    Comelli, Albert
    Stefano, Alessandro
    Benfante, Viviana
    Dahiya, Navdeep
    Stanzione, Arnaldo
    Castaldo, Anna
    De Lucia, Davide Raffaele
    Yezzi, Anthony
    Imbriaco, Massimo
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (02) : 452 - 459
  • [46] In-bore setup and software for 3T MRI-guided transperineal prostate biopsy
    Tokuda, Junichi
    Tuncali, Kemal
    Iordachita, Iulian
    Song, Sang-Eun
    Fedorov, Andriy
    Oguro, Sota
    Lasso, Andras
    Fennessy, Fiona M.
    Tempany, Clare M.
    Hata, Nobuhiko
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (18): : 5823 - 5840
  • [47] Noninvasive assessment of hepatic fibrosis using gadoxetate-disodium-enhanced 3T MRI
    Jang, Yun-Jin
    Cho, Seung Hyun
    Bae, Ji Hea
    Kim, Gab Chul
    Ryeom, Hunkyu
    Kim, Hye Jung
    Shin, Kyung-Min
    Lee, Hui Joong
    ANNALS OF HEPATOLOGY, 2013, 12 (06) : 926 - 934
  • [48] Lying in a 3T MRI scanner induces neglect-like spatial attention bias
    Lindner, Axel
    Wiesen, Daniel
    Karnath, Hans-Otto
    ELIFE, 2021, 10
  • [49] Morphologic Characteristics of Atherosclerotic Middle Cerebral Arteries on 3T High-Resolution MRI
    Zhu, X. J.
    Du, B.
    Lou, X.
    Hui, F. K.
    Ma, L.
    Zheng, B. W.
    Jin, M.
    Wang, C. X.
    Jiang, W. -J.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2013, 34 (09) : 1717 - 1722
  • [50] ROOD-MRI: Benchmarking the robustness of deep learning segmentation models to out-of-distribution and corrupted data in MRI
    Boone, Lyndon
    Biparva, Mahdi
    Forooshani, Parisa Mojiri
    Ramirez, Joel
    Masellis, Mario
    Bartha, Robert
    Symons, Sean
    Strother, Stephen
    Black, Sandra E.
    Heyn, Chris
    Martel, Anne L.
    Swartz, Richard H.
    Goubran, Maged
    NEUROIMAGE, 2023, 278