Deep Learning Segmentation of the Nucleus Basalis of Meynert on 3T MRI

被引:3
|
作者
Doss, D. J. [1 ,2 ,6 ,15 ]
Johnson, G. W. [1 ,2 ,6 ]
Narasimhan, S. [1 ,2 ,6 ,7 ]
Shless, J. S. [2 ,7 ]
Jiang, J. W. [2 ,7 ]
Gonzaez, H. F. J. [1 ,2 ,6 ]
Paulo, D. L. [7 ]
Lucas, A. [11 ]
Davis, K. A. [12 ,13 ,14 ]
Chang, C. [1 ,2 ,3 ,4 ,6 ]
Morgan, V. L. [1 ,2 ,6 ,7 ,8 ,9 ]
Constantinidis, C. [1 ,5 ,10 ]
Dawant, B. M. [2 ,3 ,6 ]
Englot, D. J. [1 ,2 ,3 ,6 ,7 ,9 ]
机构
[1] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37212 USA
[2] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN 37212 USA
[3] Vanderbilt Univ, Dept Elect & Comp Engn, Nashville, TN 37212 USA
[4] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37212 USA
[5] Vanderbilt Univ, Dept Neurosci, Nashville, TN 37212 USA
[6] Vanderbilt Inst Surg & Engn, Nashville, TN USA
[7] Vanderbilt Univ, Med Ctr, Dept Neurol Surg, Nashville, TN 37212 USA
[8] Vanderbilt Univ, Med Ctr, Dept Neurol, Nashville, TN 37212 USA
[9] Vanderbilt Univ, Med Ctr, Dept Radiol Sci, Nashville, TN 37212 USA
[10] Vanderbilt Univ, Med Ctr, Dept Ophthalmol & Visual Sci, Nashville, TN 37212 USA
[11] Univ Penn, Dept Bioengn, Philadelphia, PA USA
[12] Univ Penn, Dept Neurosci, Philadelphia, PA USA
[13] Univ Penn, Ctr Neuroengn & Therapeut, Philadelphia, PA USA
[14] Univ Penn, Dept Neurol, Philadelphia, PA USA
[15] Vanderbilt Univ, 1500 21st Ave South,VAV 4340, Nashville, TN 37212 USA
基金
美国国家卫生研究院;
关键词
SUBSTANTIA INNOMINATA; FOREBRAIN ATROPHY; BRAIN-STIMULATION; ALZHEIMERS; DISEASE; ASSOCIATION; DEMENTIA; SYSTEM; VOLUME; MAPS;
D O I
10.3174/ajnr.A7950
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSE: The nucleus basalis of Meynert is a key subcortical structure that is important in arousal and cognition and has been explored as a deep brain stimulation target but is difficult to study due to its small size, variability among patients, and lack of contrast on 3T MR imaging. Thus, our goal was to establish and evaluate a deep learning network for automatic, accurate, and patient-specific segmentations with 3T MR imaging. MATERIALS AND METHODS: Patient-specific segmentations can be produced manually; however, the nucleus basalis of Meynert is difficult to accurately segment on 3T MR imaging, with 7T being preferred. Thus, paired 3T and 7T MR imaging data sets of 21 healthy subjects were obtained. A test data set of 6 subjects was completely withheld. The nucleus was expertly segmented on 7T, providing accurate labels for the paired 3T MR imaging. An external data set of 14 patients with temporal lobe epilepsy was used to test the model on brains with neurologic disorders. A 3D-Unet convolutional neural network was constructed, and a 5-fold cross-validation was performed. RESULTS: The novel segmentation model demonstrated significantly improved Dice coefficients over the standard probabilistic atlas for both healthy subjects (mean, 0.68 [SD, 0.10] versus 0.45 [SD, 0.11], P =.002, t test) and patients (0.64 [SD, 0.10] versus 0.37 [SD, 0.22], P,.001). Additionally, the model demonstrated significantly decreased centroid distance in patients (1.18 [SD, 0.43] mm, 3.09 [SD, 2.56] mm, P =.007). CONCLUSIONS: We developed the first model, to our knowledge, for automatic and accurate patient-specific segmentation of the nucleus basalis of Meynert. This model may enable further study into the nucleus, impacting new treatments such as deep brain stimulation.
引用
收藏
页码:1020 / 1025
页数:6
相关论文
共 50 条
  • [21] Deep brain stimulation of the nucleus basalis of Meynert attenuates early EEG components associated with defective sensory gating in patients with Alzheimer disease - a two-case study
    Duerschmid, Stefan
    Reichert, Christoph
    Kuhn, Jens
    Freund, Hans-Joachim
    Hinrichs, Hermann
    Heinze, Hans-Jochen
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2020, 51 (05) : 1201 - 1209
  • [22] Susceptibility Effects in Hyperpolarized 3He Lung MRI at 1.5T and 3T
    Deppe, Martin H.
    Parra-Robles, Juan
    Ajraoui, Salma
    Parnell, Steven R.
    Clemence, Matthew
    Schulte, Rolf F.
    Wild, Jim M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2009, 30 (02) : 418 - 423
  • [23] Comparing 3T and 1.5T MRI for Mapping Hippocampal Atrophy in the Alzheimer's Disease Neuroimaging Initiative
    Chow, N.
    Hwang, K. S.
    Hurtz, S.
    Green, A. E.
    Somme, J. H.
    Thompson, P. M.
    Elashoff, D. A.
    Jack, C. R.
    Weiner, M.
    Apostolova, L. G.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (04) : 653 - 660
  • [24] Deployed Deep Learning Kidney Segmentation for Polycystic Kidney Disease MRI
    Goel, Akshay
    Shih, George
    Riyahi, Sadjad
    Jeph, Sunil
    Dev, Hreedi
    Hu, Rejoice
    Romano, Dominick
    Teichman, Kurt
    Blumenfeld, Jon D.
    Barash, Irina
    Chicos, Ines
    Rennert, Hanna
    Prince, Martin R.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (02)
  • [25] Deep Brain Stimulation of the Nucleus Basalis of Meynert in Alzheimer's Dementia: Potential Predictors of Cognitive Change and Results of a Long-Term Follow-Up in Eight Patients
    Hardenacke, K.
    Hashemiyoon, R.
    Visser-Vandewalle, V.
    Zapf, A.
    Freund, H. J.
    Sturm, V.
    Hellmich, M.
    Kuhn, J.
    BRAIN STIMULATION, 2016, 9 (05) : 799 - 800
  • [26] Cortical cerebral microinfarcts on 3T MRI A novel marker of cerebrovascular disease
    Hilal, Saima
    Sikking, Emiel
    Shaik, Muhammad Amin
    Chan, Qun Lin
    van Veluw, Susanne J.
    Vrooman, Henri
    Cheng, Ching-Yu
    Sabanayagam, Charumathi
    Cheung, Carol Y.
    Wong, Tien Yin
    Venketasubramanian, Narayanaswamy
    Biessels, Geert Jan
    Chen, Christopher
    Ikram, Mohammad Kamran
    NEUROLOGY, 2016, 87 (15) : 1583 - 1590
  • [27] A Dedicated 36-Channel Receive Array for Fetal MRI at 3T
    Chen, Qiaoyan
    Xie, Guoxi
    Luo, Chao
    Yang, Xing
    Zhu, Jin
    Lee, Jo
    Su, Shi
    Liang, Dong
    Zhang, Xiaoliang
    Liu, Xin
    Li, Ye
    Zheng, Hairong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (10) : 2290 - 2297
  • [28] Multiparametric 3T MRI in the evaluation of intraglandular prostate cancer: Correlation with histopathology
    Styles, Colin
    Ferris, Nicholas
    Mitchell, Catherine
    Murphy, Declan
    Frydenberg, Mark
    Mills, John
    Pedersen, John
    Bergen, Noelene
    Duchesne, Gillian
    JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2014, 58 (04) : 439 - 448
  • [29] MRI-Compatible Microcirculation System Using Ultrasonic Pumps for Microvascular Imaging on 3T MRI
    Jung, Ju-Yeon
    Seo, Dong-Kyu
    Lee, Yeong-Bae
    Kang, Chang-Ki
    SENSORS, 2022, 22 (16)
  • [30] deepPGSegNet: MRI-based pituitary gland segmentation using deep learning
    Choi, Uk-Su
    Sung, Yul-Wan
    Ogawa, Seiji
    FRONTIERS IN ENDOCRINOLOGY, 2024, 15