Spatio-Temporal Agnostic Deep Learning Modeling of Forest Fire Prediction Using Weather Data

被引:5
作者
Mutakabbir, Abdul [1 ]
Lung, Chung-Horng [1 ]
Ajila, Samuel A. [1 ]
Zaman, Marzia [2 ]
Naik, Kshirasagar [3 ]
Purcell, Richard [4 ]
Sampalli, Srinivas [4 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada
[2] Cistel Technol, Res & Dev, Ottawa, ON, Canada
[3] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
[4] Dalhousie Univ, Faculo7 Comp Sci, Halifax, NS, Canada
来源
2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC | 2023年
基金
加拿大自然科学与工程研究理事会;
关键词
Forest Fires; Fire Weather Index; Machine Learning; Deep Learning; Data Sampling; Dataset Balancing; Big Data Analytics; Data Mining; LIGHTNING FIRE;
D O I
10.1109/COMPSAC57700.2023.00054
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This research provides a spatio-temporal agnostic framework based on subsampling to generate generic deep learning models using publicly available weather data and to predict the probability of forest fire and severity. The aim is to show that this framework can be used to subsample and generate a balanced dataset for generic deep learning models to improve predictions for forest fires. The framework works for binary classification and regression deep learning models. It also works with limited variations between fire and non-fire data. Using this framework, 45 of the binary classification models built produced an F1Score greater than 0.95 while 35 of 54 regression models produced an R2Score greater than 0.91.
引用
收藏
页码:346 / 351
页数:6
相关论文
共 22 条
[11]   Automatic Calibration of Forest Fire Weather Index For Independent Customizable Regions Based on Historical Records [J].
Junior, Jorge S. S. ;
Paulo, Joao ;
Mendes, Jerome ;
Alves, Daniela ;
Ribeiro, Luis Mario .
2020 IEEE THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE 2020), 2020, :1-8
[12]  
Latifah AL, 2019, 2019 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL, INFORMATICS AND ITS APPLICATIONS (IC3INA), P4, DOI [10.1109/ic3ina48034.2019.8949588, 10.1109/IC3INA48034.2019.8949588]
[13]  
Lin T. Z., 2022, P 2022 INT C BDICN 2
[14]  
Morris R., 2016, Final Report - Updating CWEEDS Weather Files
[15]  
Stocks B. J., 1989, FOREST CHRON
[16]  
The State of Canada's Forests, 2022, ANN REP 2022
[17]  
Thomas G., 2021, J ENVIRON MANAGE
[18]   Increasing frequency of extreme fire weather in Canada with climate change [J].
Wang, Xianli ;
Thompson, Dan K. ;
Marshall, Ginny A. ;
Tymstra, Cordy ;
Carr, Richard ;
Flannigan, Mike D. .
CLIMATIC CHANGE, 2015, 130 (04) :573-586
[19]   Lightning and lightning fire, central cordillera, Canada [J].
Wierzchowski, J ;
Heathcott, M ;
Flannigan, MD .
INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2002, 11 (01) :41-51
[20]   A lightning fire occurrence model for Ontario [J].
Wotton, BM ;
Martell, DL .
CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 2005, 35 (06) :1389-1401