A machine learning-based state estimation approach for varying noise distributions

被引:1
作者
Hilal, Waleed [1 ]
Gadsden, Stephen A. [1 ]
Yawney, John [1 ,2 ]
机构
[1] McMaster Univ, 1280 Main St, Hamilton, ON L8S 4L8, Canada
[2] Adastra Corp, 200 Bay St, Toronto, ON M5J 2J2, Canada
来源
SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXXII | 2023年 / 12547卷
关键词
Estimation theory; Kalman filter; machine learning; robust estimation; signal filtering; nonlinear systems; non-Gaussian noise;
D O I
10.1117/12.2663898
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The field of estimation theory is concerned with providing a system with the ability to extract relevant information about the environment, resulting in more effective interaction with the system's surroundings through more well-informed, robust control actions. However, environments often exhibit high degrees of nonlinearity and other unwanted effects, posing a significant problem to popular techniques like the Kalman filter (KF), which yields an optimal only under specific conditions. One of these conditions is that the system and measurement noises are Gaussian, zero-mean with known covariance, a condition often hard to satisfy in practical applications. This research aims to address this issue by proposing a machine learning-based estimation approach capable of dealing with a wider range of noise types without the need for a known covariance. Harnessing the generative capabilities of machine learning techniques, we will demonstrate that the resultant model will prove to be a robust estimation strategy. Experimental simulations are carried out comparing the proposed approach with other conventional approaches on different varieties of functions corrupted by noises of varying distribution types.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A machine learning-based underwater noise classification method
    Song, Guoli
    Guo, Xinyi
    Wang, Wenbo
    Ren, Qunyan
    Li, Jun
    Ma, Li
    APPLIED ACOUSTICS, 2021, 184
  • [2] Machine learning-based approach to GPS antijamming
    Wang, Cheng-Zhen
    Kong, Ling-Wei
    Jiang, Junjie
    Lai, Ying-Cheng
    GPS SOLUTIONS, 2021, 25 (03)
  • [3] Machine learning-based approach to GPS antijamming
    Cheng-Zhen Wang
    Ling-Wei Kong
    Junjie Jiang
    Ying-Cheng Lai
    GPS Solutions, 2021, 25
  • [4] A Machine Learning-based Approach for Groundwater Mapping
    Zzaman, Rashed Uz
    Nowreen, Sara
    Khan, Irtesam Mahmud
    Islam, Md Rajibul
    Ibtehaz, Nabil
    Rahman, M. Saifur
    Zahid, Anwar
    Farzana, Dilruba
    Sharmin, Afroza
    Rahman, M. Sohel
    NATURAL RESOURCES RESEARCH, 2022, 31 (01) : 281 - 299
  • [5] A Machine Learning-based Approach for Groundwater Mapping
    Rashed Uz Zzaman
    Sara Nowreen
    Irtesam Mahmud Khan
    Md. Rajibul Islam
    Nabil Ibtehaz
    M. Saifur Rahman
    Anwar Zahid
    Dilruba Farzana
    Afroza Sharmin
    M. Sohel Rahman
    Natural Resources Research, 2022, 31 : 281 - 299
  • [6] Machine Learning-based Software Effort Estimation : An Analysis
    Polkowski, Zdzislaw
    Vora, Jayneel
    Tanwar, Sudeep
    Tyagi, Sudhanshu
    Singh, Pradeep Kumar
    Singh, Yashwant
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2019), 2019,
  • [7] A Machine Learning-Based Approach for Spatial Estimation Using the Spatial Features of Coordinate Information
    Ahn, Seongin
    Ryu, Dong-Woo
    Lee, Sangho
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (10)
  • [8] Machine learning-based approach for ballistic coefficient estimation of resident space objects in LEO
    Cimmino, N.
    Opromolla, R.
    Fasano, G.
    ADVANCES IN SPACE RESEARCH, 2023, 71 (12) : 5007 - 5025
  • [9] Performance Analysis on Machine Learning-Based Channel Estimation
    Mei, Kai
    Liu, Jun
    Zhang, Xiaochen
    Rajatheva, Nandana
    Wei, Jibo
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (08) : 5183 - 5193
  • [10] The Smart Kalman Filter: A Deep Learning-Based Approach for Time-Varying Channel Estimation
    Siebert, Antoine
    Ferre, Guillaume
    Le Gal, Bertrand
    Fourny, Aurelien
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,